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Sensory systems exploit the statistical regularities of natural signals, and thus, a fundamental goal for understanding
biological sensory systems, and creating artificial sensory systems, is to characterize the statistical structure of natural
signals. Here, we use a simple conditional moment method to measure natural image statistics relevant for three
fundamental visual tasks: (i) estimation of missing or occluded image points, (ii) estimation of a high-resolution image from a
low-resolution image (“super resolution”), and (iii) estimation of a missing color channel. We use the conditional moment
approach because it makes minimal invariance assumptions, can be applied to arbitrarily large sets of training data, and
provides (given sufficient training data) the Bayes optimal estimators. The measurements reveal complex but systematic
statistical regularities that can be exploited to substantially improve performance in the three tasks over what is possible
with some standard image processing methods. Thus, it is likely that these statistics are exploited by the human visual
system.
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Introduction

Natural images, like most other natural signals, are
highly heterogeneous and variable; yet despite this varia-
bility, they contain a large number of statistical regularities.
Visual systems have evolved to exploit these regularities so
that the eye can accurately encode retinal images and the
brain can correctly interpret them. Thus, characterizing the
structure of natural images is critical for understanding
visual encoding and decoding in biological vision systems
and for applications in image processing and computer
vision.
Here, we use a direct conditional moment approach to

measure the joint statistics relevant for the three simple
visual tasks illustrated in Figure 1. The first task is
estimation of missing image points (Figure 1a). The
symbols r, s, t, and u represent observed values along a
row of image pixels and x represents an unobserved value
to be estimated. This kind of task arises when some image
locations are occluded or a sensor element is missing. A
different variant of the task arises when only some of the
color values are absent at a location (e.g., the demosaicing
task, Brainard, Williams, & Hofer, 2008; Li, Gunturk, &
Zhang, 2008, and related tasks, Zhang & Brainard, 2004).
The second task is estimation of a high-resolution image
from a low-resolution image (Figure 1b). Again, the
symbols r, s, t, and u represent observed low spatial
resolution values obtained by locally averaging and then
downsampling a higher resolution image; x and y

represent unobserved values to be estimated. This kind
of task arises naturally in interpreting (decoding) retinal
responses in the periphery. For example, Figure 1b
corresponds approximately to the situation around 1-degree
eccentricity in the human retina where the sampling by
midget (P) ganglion cells is about one-half that in the
fovea (one-fourth the samples per unit area). In the
computer vision literature, the goal of this task is referred
to as “super resolution” (Freeman, Thouis, Jones, &
Pasztor, 2002; Glasner, Bagon, & Irani, 2009; Li &
Adelson, 2008). The third task is estimation of a missing
color channel given the other two. The symbols s and t
represent the observed color values (e.g., G and B) at a
pixel location, and x represents the unobserved value to be
estimated (e.g., R). This is not a natural task, but it reveals
the redundancy of color in natural scenes and sets an upper
limit on how well a dichromat could estimate his missing
color channel without knowledge of the spatial correla-
tions in images or the objects in the scene. Furthermore,
statistics measured for this task could be of use in other
tasks (e.g., demosaicing). We find that the image statistics
for these tasks are complex but regular (smooth), are
useful for performing the tasks, and make many testable
predictions for visual coding and visual performance.
The most studied regularities in natural images involve

single and pairwise statistics. For example, the intensities
of randomly sampled points from a natural image have a
probability distribution that is approximately Gaussian on
a logarithmic intensity axis (Laughlin, 1981; Ruderman,
Cronin, & Chiao, 1998), and the intensities of randomly
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sampled pairs of points have a covariance that declines
smoothly as a function of the spatial separation between
the points, in a fashion consistent with a Fourier amplitude
spectrum that falls inversely with spatial frequency
(Burton & Moorehead, 1987; Field, 1987; Ruderman &
Bialek, 1994). Many other statistical regularities have been
discovered by measuring pairwise statistics of image
properties such as local orientation, color, spatial fre-
quency, contrast, phase, and direction of motion (for
reviews, see Geisler, 2008; Simoncelli & Olshausen,
2001). Much can be learned by measuring such pairwise
statistics. For example, if the joint distribution of image
features is Gaussian, then measuring the mean value of
each feature and the covariance (a form of pairwise
statistic) of the values for all pairings of features is
sufficient to completely specify the joint distribution.
However, the joint distributions of many image features

are not Gaussian and may not be completely described
with pairwise statistics (Buccigrossi & Simoncelli, 1999;
Daugman, 1989; Field, 1987; Zhu & Mumford, 1997), or
it may be intractable to determine if they can be described
by pairwise statistics. A useful strategy for characterizing
statistical structure of natural images is to fit image data
with some general class of generative model such as linear
models that assume statistically independent but non-
Gaussian sources (Bell & Sejnowski, 1997; Karklin &
Lewicki, 2008; Olshausen & Field, 1997; van Hateren &
van der Schaaf, 1998) or random Markov field models
with filter kernels similar to those in the mammalian visual
system (e.g., Portilla & Simoncelli, 2000; for reviews, see
Simoncelli & Olshausen, 2001; Zhu, Shi, & Si, 2010).
Alternatively, more complex joint distributions could be
approximated with Gaussian mixtures (e.g., Maison &
Vandendorpe, 1998). While these approaches have yielded
much insight into the structure of natural images and
neural encoding, they involve assumptions that may miss

higher dimensional statistical structure (Lee, Pedersen, &
Mumford, 2003).
In addition, weaker forms of assumed structure are

sometimes implicit in normalization steps performed on
each signal prior to the learning of their statistical
structure. These normalization steps typically involve
applying one of the following simple transformations to
each training signal z (e.g., image patch): subtract the
mean of the signal (zV= z j z�), subtract the mean and then
divide by the mean (zV= (z j z�)/z�), subtract the mean and
scale to a vector length of 1.0 (zV= (z j z�)/kz j z�k), or
subtract the mean and then multiply by a “whitening”
matrix (zVT = W(z j z�)T). Usually, these normalization
steps are applied to simplify the mathematics or reduce
the dimensionality of the estimation problem. The
assumption is that the normalization preserves the impor-
tant statistical structure. For example, it is plausible that
the statistical structure of image patches is largely
independent of their mean luminance, if they are repre-
sented as contrast signals by subtracting and dividing by
the mean. Similarly, standard image processing algorithms
for some of the point prediction tasks considered here
implicitly assume that subtracting off the mean luminance
of the observed signal preserves the relevant statistical
structure. Thus, in both cases, the assumption is effec-
tively that p(z) = p(zV)p(z�).
The most obvious strategy for characterizing statistical

structure without making parametric assumptions is to
directly estimate probability distributions by histogram
binning. This strategy has proved useful for small numbers
of dimensions (e.g., Geisler, Perry, Super, & Gallogly,
2001; Petrov & Zhaoping, 2003; Tkaèik, Prentice, Victor,
& Balasubramanian, 2010). A more sophisticated strategy
uses clustering techniques to search for the subspace
(manifold) where natural image signals are most concen-
trated (Lee et al., 2003). While this strategy has provided
valuable insight (e.g., the manifold is concentrated around
edge-like features), the subspaces found are still relatively
high dimensional and not precisely characterized.
An alternative strategy emphasized here is based on

directly measuring moments along single dimensions,
conditional on the values along other dimensions. Measur-
ing conditional moments is a well-known approach for
characterizing probability distributions (e.g., see statistics
textbooks such as Fisz, 1967), and like directly estimating
probability distributions, it is only practical for modest
numbers of dimensions because of the amount of data
required. Nonetheless, it has not been exploited for the
current tasks and it has some unique advantages. First,
univariate conditional distributions for local image proper-
ties are frequently unimodal and simple in shape, and thus,
the first few moments capture much of the shape
information. Second, estimating conditional moments only
requires keeping a single running sum for each moment,
making it practical to use essentially arbitrarily large
numbers of training signals and hence to measure higher
dimensional statistics with higher precision. Third, it is

Figure 1. Three estimation tasks. (a) Estimation of missing image
points. (b) Estimation of a high-resolution image from a low-
resolution image. (c) Estimation of a missing color channel.
Letters x and y represent values to be estimated; other letters
represent observed values.
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relatively straightforward to specify Bayes optimal esti-
mators from conditional moments. Of central relevance
here, the conditional first moment (conditional mean) is
the Bayes optimal estimator when the cost function is the
mean square error (i.e., the so-called MMSE estimator).
Fourth, conditional moments can be combined allowing
the approach to be extended to higher numbers of
dimensions than would otherwise be practical.
The proposed conditional moment method is related to

other non-parametric methods such as example-based
methods of texture synthesis, where individual pixels are
assigned the median (or mean) value of the conditional
probability distribution estimated for the given surround-
ing context pixels (De Bonet, 1997; Efron & Leung,
1999).

Methods

Training and test stimuli

The image set consisted of 1049 images of outdoor
scenes collected in the Austin area with a calibrated Nikon
D700 camera (see Ing, Wilson, & Geisler, 2010 for the
calibration procedure). The images contained no human-
made objects and the exposure was carefully set for each
image so as to minimize pixel response saturation and
thresholding (clipping at high and low intensities). Each
4284 � 2844 14-bit raw Bayer image was interpolated to
14-bit RGB using the AHD method (Hirakawa & Parks,
2005). The RGB values were then scaled using the multi-
pliersmR = 2.214791, mG = 1.0, and mB = 1.193155 (which
are determined by the camera make and model) to obtain a
16-bit RGB image. In the case of gray scale, YPbPr color
space conversion was used (Gray = 0.299R + 0.587G +
0.114B). The dynamic range was increased by blacking out
2% of the darkest pixels and whiting out 1% of the brightest
pixels. Blacking out pixels almost never occurred because
in most images 2% of the pixels were already black. On the
other hand, whiting out 1% of the brightest pixels has an
effect because the image histograms have such long tails on
the high end. For some measured statistics, the images were
then converted to LMS cone space. Finally, the images were
converted to linear 8-bit gray scale or 24-bit color. The
images were randomly shuffled and then divided into two
groups: 700 training images that were used to generate the
tables and 349 test images. All pixels in the training images
were used to estimate conditional moments, and thus, the
number of training samples was on the order of 1010.

Conditional moments

The conditional moment approach is very straightforward.
From the definition of conditional probability, an arbitrary
joint probability density function over n dimensions can

be written as a product of single dimensional conditional
probability density functions:

pðxnÞ ¼
Yn

i¼1

pðxikxij1Þ; ð1Þ

where xij1 = (x1, I, xij1) and x0 = <. Furthermore, the
moments of a single dimensional probability distribution
function defined over a finite interval (as in the case of
image pixel values) are usually sufficient to uniquely
specify the density function (e.g., Fisz, 1967). Thus, the
full joint probability density function can be characterized
by measuring the single dimensional conditional
moments:

Eðxki kxij1Þ ¼
X

xi

xki pðxikxij1Þ; ð2Þ

where k is the moment (e.g., k = 1 gives the mean of the
posterior probability distribution of xi given xij1). As is
standard, these moments can be estimated simply by
summing the observed values of xi

k for each unique (or
quantized) value of the vector xij1 and then dividing by
the number of times the vector xij1 was observed:

E xki kxij1

� �
;

X

xiZ 4ðxij1Þ
xki

Nðxij1Þ ; ð3Þ

where 4(xij1) is the set of observed values of xi for the
given value of the vector xij1, and N(xij1) is the number
of those observed values.
We define the MMSE estimation function for xi to be

f ðxij1Þ ¼ Eðxikxij1Þ; ð4Þ

which gives the Bayes optimal estimate of xi when the
goal is to minimize the mean squared error of the estimate
from the true value (e.g., Bishop, 2006). The reliability of
these estimates is given by

>ðxij1Þ ¼ 1=VARðxikxij1Þ; ð5Þ

which is obtained from the first and second moments:
VAR(xijxij1) = E(xi

2jxij1) j E(xijxij1)
2. The focus of

most of this paper is on measuring and applying f(xij1)
and >(xij1).
Given the number of training images, we were limited

to directly measuring conditional moments for probability
distributions with five or fewer dimensions. However, it is
possible to obtain estimates based on even higher numbers
of dimensions by combining estimates from different sets
of conditional variables. For example, let x̂1 be the
estimate of x given one set of conditional variables, let
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x̂2 be the estimate of x given a different set of conditional
variables, and let >̂1 and >̂2 be their estimated reliabilities.
If the estimates are Gaussian distributed and uncorrelated,
then the optimal estimate given the combined conditional
variables is

x̂¼ x̂1+ þ x̂2ð1j +Þ; ð6Þ

where + = >̂1 / (>̂1 + >̂2) is the relative reliability of the two
estimates (e.g., Oruç, Maloney, & Landy, 2003; Yuille &
Bulthoff, 1996). The more general combination rules for
the case where the estimates are correlated are known
(e.g., see Oruç et al., 2003); however, there are not enough
training images to estimate these correlations. Nonethe-
less, applying Equation 6 can increase the accuracy of the
estimates.
A more general way to combine the estimates that take

into account relative reliability, and potentially other
statistical structure, is to directly measure the MMSE
function:

gðx̂1; x̂2; +Þ ¼ Eðxkx̂1; x̂2; +Þ: ð7Þ

If sufficient training data are available, this function is
guaranteed to perform at least as well as Equation 6.
It is important to note that none of these methods for

combining the estimates are guaranteed to capture all of
the additional statistical structure contained in the condi-
tional moments of the combined variables. Nonetheless,
they do make it practical to extend the conditional
moment approach beyond five dimensions.

Results

Statistics
Conditional moments for three neighboring image
points

To illustrate the conditional moment approach, consider
first the conditional moments of an image point x given
the two flanking values s and t (see Figure 1a). The direct
method of measuring the kth moment, E(xkjs, t), is simply
to compute the running sum of the values of xk for all
possible values s, t, using every pixel in the 700 training
images (see Equation 3). The result is a 256 � 256 table
for each moment, where each table entry is for a particular
pair of flanking values. These tables were estimated
separately for horizontal and vertical flanking points;
however, the tables did not differ systematically and
hence were combined. This property held for the other
cases described below, and hence, we show here only the
combined tables.
Figures 2a–2d show tables of the first four moments,

expressed as standard conditional central moments. Thus,

the tables show the conditional mean, standard deviation,
skew, and kurtosis of the center point for each pair of
values of the flanking points. These tables have not been
smoothed. Figure 2e shows the number of training
samples that went into the estimates for each pair of
flanking values. As can be seen, these natural image
statistics are complex but very regular. The only trivial
property of the tables is the symmetry about the diagonal,
which simply says that s and t can swap locations without
affecting the statistics. Some sense of what these tables
represent can be gained from Figure 2f, which plots
normalized histograms of x for the five pairs of flanking
values indicated by the dots in Figures 2a–2d. These
distributions are approximately unimodal and so are
relatively well described by the first four moments.
The table of conditional first moments in Figure 2a

gives the Bayes optimal MMSE estimate of x given a
flanking pair of points. The table of conditional second
moments can be used to combine separate MMSE
estimates (e.g., estimates based on horizontal and vertical
flanking points; see later). Maximum a posteriori (MAP)
estimates (or estimates based on other cost functions)
should be possible using the four moments to estimate the
parameters of a suitable family of unimodal density
functions. However, the focus in the remainder of this
paper is on MMSE estimates.

Estimation of missing or occluded image points

Consider first the case of estimating x from just the two
nearest flanking values (s, t). The MMSE estimate
function f(s, t) is given by the table in Figure 2a. If the
joint probability distribution p(x, s, t) were Gaussian, then
(given two obvious constraints that apply in our case:
when s = t, the optimal estimate is s, and symmetry about
the diagonal) the optimal estimate would be the average of
the two flanking values: f(s, t) = (s + t) / 2 (see Appendix A).
Similarly, if the joint probability distribution p(x, s, t) is
Gaussian on log axes, then the optimal estimate would be
the geometric average of the two flanking values: f(s, t) =ffiffiffiffi
st

p
. These are useful references against which to compare

the measured table.
The plot in Figure 3b shows the difference between the

measured table and the table predicted if the joint
distribution were Gaussian (the prediction of linear
regression). As can be seen, there are systematic but
complex differences between the directly measured func-
tion and the Gaussian prediction. The black pixels show
cases where the optimal estimate is equal to the average of
the flanking pixel values. The warm-colored pixels
indicate cases where the estimate is above the average of
the flanking pixels and the cool-colored pixels where the
estimate is below the average. Examining where differ-
ences from the Gaussian prediction occur in representative
natural images suggests that they tend to be associated
with well-defined contours.
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Importantly, there are no obvious forms of invariance in
Figure 3b (or Figure 2a), except for the expected diagonal
symmetry: f(s, t) = f(t, s). In other words, the optimal
estimates depend on the specific absolute values of s and t,
not only on their relative values. The lack of obvious
invariance in Figure 3b shows that less direct methods of
measuring the image statistics could have missed impor-
tant structure. For example, suppose each signal were
normalized by subtracting the mean of s and t before
measuring the conditional first moments, and then the
mean was added back in to create a table like Figure 2a. If
this procedure did not miss any information, then the
difference values plotted in Figure 3b would be constant
along every line parallel to the diagonal (see Appendix A).
In fact, most interpolation methods (e.g., linear, cubic, and
spline methods) ignore the mean signal value and consider
only the difference values. Similarly, if normalizing each
signal by subtracting and dividing by the mean of s and t
before measuring the conditional first moments did not
lose information, then the difference values in Figure 3b
would be constant along any line passing though the
origin (see Appendix A). In other words, these common
preprocessing steps would have led us to miss some of the
statistical structure shown in Figure 3b. Similar conclu-
sions are reached if the log Gaussian prediction is used as
the reference, suggesting that the complex structure and
the lack of invariance are not due to the non-Gaussian

shape of the marginal distribution of intensity values. As a
further test, we quantized the 14-bit raw images into 8-bit
images having an exactly Gaussian histogram, and then
ran the above analyses. The resulting plots are qualita-
tively similar to those in Figure 3b.
Now consider the case of estimating x from all four

neighboring values (r, s, t, u). In this case, the goal is to
measure the MMSE estimation function:

f ðr; s; t; uÞ ¼ Eðxkr; s; t; uÞ: ð8Þ

To facilitate measurement and visualization of this four-
dimensional function, it is useful to measure and plot
separate two-dimensional tables for each pair of values
(s, t). In other words, we measure 216 tables of the form
fs,t(r, u). This set of two-dimensional tables constitutes the
full four-dimensional table.
The direct method of computing the mean of x for all

possible flanking point values is not practical given the
amount of image data we had available. One way to
proceed is to lower the resolution of the table for the
furthest flanking points. Reducing the resolution is
justifiable for two reasons: (i) the furthest flanking points
should generally have less predictive power, and (ii) reducing
resolution is equivalent to assuming a smoothness con-
straint, which is plausible given the smoothness of the

Figure 2. Conditional central moments for three neighboring image points. (a) The 1st moments are the means: 2 = u1. (b) The 2nd
moments are plotted as the standard deviation: A =

ffiffiffiffiffi
u2

p
. (c) The 3rd moments are plotted as the skewness: +1 = u3/u2

3/2
. (d) The 4th

moments are plotted as the excess kurtosis: +2 = u4/u2
2 j 3 (a Gaussian has an excess kurtosis of 0), where the central moments for each

pair of values (s, t) were computed in the standard way: u1 = nj1~x, u2 = nj1~(x j u1)
2, u3 = nj1~(x j u1)

3, u4 = nj1~(x j u1)
4 (see

Kenny & Keeping, 1951; Papoulis, 1984). (e) Number of training samples for each value of s, t. (f) Conditional distributions for the five
sample pairs of (s, t) values indicated by the dots in (a)–(d). The plots have not been smoothed.
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third-order statistics (plot in Figure 2a). We quantized the
values of r and u into 16 bins each:

fs;tðr; uÞ ; fs;tðqðrÞ; qðuÞÞ; ð9Þ

where q(I) is a quantization function that maps the values
of r and u into 16 integer values between 0 and 255.
The plots in Figures 3d–3f are representative examples

of tables for the different values of (s, t) corresponding to
the white letters in Figure 3b. As in Figure 2a, the color
indicates the optimal estimate. (In the plot, gray indicates
values of (r, s, t, u) that did not occur in the training set.)
Again, the statistical structure is complex but relatively
smooth and systematic. Consider the tables for values of
(s, t) that are along the diagonal (s = t). When the values
of r and u are below s and t, then (r, s, t, u) is consistent
with a convex intensity profile and the estimate is above
the average of s and t (see Figure 3g). On the other hand,
when the values of r and u exceed s and t, then (r, s, t, u)
is consistent with a concave intensity profile and the
estimate is below the average of s and t (see Figure 3h).

Similar behavior is seen in the tables for values of (s, t)
that are not along the diagonal, but the tables are less
symmetric. These are intuitive patterns of behavior, but
again, there are no obvious forms of invariance except for
the diagonal symmetry when s = t.
As mentioned earlier, the estimation functions obtained

by analyzing horizontal and vertical flanking points do not
differ systematically, and thus, in each case the horizontal
and vertical data were combined to obtain a single
estimation function, which can be applied in either
direction. However, when this function is applied in both
the horizontal and vertical directions, for the same image
point, somewhat different estimates are often obtained. In
other words, there is additional information available in
the two estimates.
It is possible to characterize some of this additional

information by measuring the relative reliability of the
two estimates, which determines how much weight each
should be given in the combined estimate. The blue curve
in Figure 4a plots the distribution of relative reliability for
the missing image point (interpolation) task when the two
estimates are based on the horizontal and vertical values

Figure 3. Estimation of a missing or occluded point. (a) In the case of third-order statistics, the aim is to predict x from (s, t). In the case of
fifth-order statistics, the aim is to predict x from (r, s, t, u). (b) Optimal estimation of x given (s, t). The color map shows the difference
between the optimal estimate and average of s and t, which corresponds to the optimal estimate assuming a Gaussian joint distribution.
(c–f) Optimal estimation of x from (r, s, t, u), for the specific values of (s, t) indicated by the white letters in (b); (c) (63, 63), (d) (191, 191),
(e) (48, 154), (f) (210, 126). Each plot gives the optimal estimate as a function of the further flanking values r and u. Gray indicates no
data. (g, h) Examples of specific point predictions for the two quantile bins labeled in (c). The black triangles show the observed values
(r, s, t, u); the red circle shows the optimal prediction.
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of (r, s, t, u). There is considerable variation in the relative
reliability, suggesting that this measure contains useful
information. This large variation may be due to the
structure of intensity gradients in natural images. As
shown in Figure 2b, estimates based on image points that
are near equal are more reliable than estimates based on
image points that are less equal. However, image points
that are relatively parallel to the local intensity gradient
are closer to equal than image points that are relatively
perpendicular to the local intensity gradient. In the

performance demonstrations below, we combine horizon-
tal and vertical estimates (x̂H and x̂V) using relative
reliability (see Equation 6 in the Methods section).

Estimation of a high-resolution image
from a low-resolution image

The task of upsampling from a low-resolution to a high-
resolution image is illustrated in Figure 5a. Upsampling
involves both interpolation and compensation for spatial

Figure 4. Reliability and recursive estimation. (a) Relative frequency of the relative reliability of the two estimates based on values in the
horizontal and vertical directions for the task of estimating the missing or occluded image point (blue curve) and estimating a higher
resolution image point (red curve). (b) Recursive estimation function for upsampling. The horizontal axis gives the optimal estimate of x given
the observed values in the horizontal direction in the image, and the vertical axis gives the optimal estimate of x given the observed values
in the vertical direction. The color scale gives the estimate of x given the estimates in the two directions minus the average of the two
optimal estimates, for a relative reliability of 0.5. Gray indicates no data.

Figure 5. Estimation of a high-resolution image from a low-resolution image. (a) Fourth-order statistics are used to predict x from (r, s, t)
and fifth-order statistics are used to predict y from (r, s, t, u). (b, c) Optimal estimation of x given (r, s, t) for two values of s. The color
indicates the optimal estimate of x. Gray indicates no data. (d, e) Examples of specific point prediction for two bins in (c). The black
triangles are specific values (r, s, t); the red circles are the optimal estimates.
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filtering. In general, a low-resolution image can be
conceptualized as being obtained from a higher resolution
image by the operation of low-pass spatial filtering
followed by downsampling. For example, a well-focused
camera image (or a foveal cone image) can be regarded as
a higher resolution image that has been filtered by a small
amount of optical blur plus summation over the area of the
sensor element, followed by downsampling at the sensor
element locations. As illustrated in Figure 5a, we consider
here the case where the filtering operation has an odd
kernel so that each low-resolution image point is centered
on a high-resolution image point. The case for an even
kernel is similar but differs in certain details (it is
somewhat simpler).
As shown in Figure 5a, different statistics were used for

estimating points like x that are aligned with low-
resolution points and those like y that are centered
between low-resolution points. Following similar logic
as before, the Bayes optimal estimate of x is given
by E(xjr, s, t) and the optimal estimate of y is given by
E(yjr, s, t, u), and thus, our aim is to measure the functions
fs(r, t) for the aligned points (x) and the functions fs,t(r, u)
for the between points (y). To measure these functions, we
first filtered all of the calibrated images with a 3 � 3
Gaussian kernel and then downsampled them by a factor
of two in each direction to obtain a set of low-resolution
images together with their known higher resolution
“ground-truth” images. As before, we quantized the more
distant image points, and thus, we measured fs(q(r), q(t))
and fs,t(q(r), q(u)), where q(I) is a quantization function.
Examples of the tables measured for the aligned points

(x) are shown in Figures 5b and 5c. The plots show the
optimal estimate of x. As can be seen, if the values of r
and t are greater than s, then the optimal estimate of x is
less than s (see Figure 5d), and vice versa if the values of r
and t are less than s (see Figure 5e). The tables measured for
the between points (y) are similar to those in Figures 3c–3f.
The tables plotted in Figure 5 are intuitively reasonable
and reflect both the structure of the natural images and the
effect of the blur kernel.
The relative reliability for the horizontal and vertical

estimates of the aligned points (x) is shown by the red
curve in Figure 4a. The relative reliability is concentrated
around 0.5, suggesting that this measure contains less
useful information than in the case of the missing image
point task. Indeed, we found that more useful information
is contained in the recursive conditional first moments
(see Equation 7 in the Methods section). Figure 4b plots
the estimate of x given x̂H and x̂V minus the average of the
two estimates, for a relative reliability (+) of 0.5. Again,
the statistics are complex but regular. If the estimates
nearly agree, then the best estimate is near the average of
the two estimates. If the estimates do not agree, then the
best estimate is higher than the average when the average
is big but lower than the average when the average is
small.

Estimation of a missing color channel

The task of estimating a missing color channel is
illustrated in Figure 1c. Recall that in this task we ignore
spatial information. We consider the task of estimating
each color channel given the other two. We do this for two
cases, one where the three channels are the R, G, and B
sensors in the camera, and the other where the three
channels are the L, M, and S cones in the human retina. In
other words, we measured the following statistics: E(RjG, B),
E(GjR, B), E(BjR, G), E(LjM, S), E(MjL, S), and E(SjL, M).
Recall that these first conditional moments are the Bayes
optimal estimates when the goal is to minimize the mean
squared error.
Figure 6 plots the estimates for each class of sensor.

Once again, the statistics are complex but regular, and
there are no obvious forms of invariance. In other words,
the estimates of a color channel value depend on the
specific absolute values of the other channels.

Performance

The measurements in Figures 2–6 reveal complex
statistical structure in natural grayscale and color images.
These statistics are of interest in their own right, but an
obvious question is what their implications might be for
vision and image processing. Perhaps the most funda-
mental questions are: How useful would knowledge of
these statistics be to a visual system? And, does the human
visual system use this knowledge? The conditional first
moments in Figures 2–6 give the Bayes optimal (MMSE)
estimates for the specific tasks shown in Figure 1. Thus, to
address these questions, we could compare optimal
performance on these tasks with that of other simpler
estimators, and we could also potentially compare ideal
and human performance in the first two tasks (i.e., subjects
could make estimates based on a short row or column of
natural image pixels). While this is doable and potentially
useful, we show here predictions for the third task and for
the two-dimensional versions of the first two tasks, where
multiple estimates are combined using the measured
recursive conditional moments. Although we cannot
guarantee optimal performance on the two-dimensional
tasks, they are closer to the normal image processing tasks
carried out in biological and artificial vision systems. All
comparisons were carried out on a separate random sample
of test images.

Estimation of missing or occluded image points

For each pixel in each test image, we estimated its value
by applying the MMSE estimation function f(r, s, t, u) in
both directions and combining the two estimates using the
measured relative reliability. This is what we call the
biprior estimator. We also estimated the value of each
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pixel using the standard bilinear estimator. Estimation
accuracy is quantified as the peak signal-to-noise ratio,
PSNR = 10log(2552/MSE), where MSE is the mean
squared error between the estimated and true values.
Thus, a 50% decrease in MSE corresponds to a 3-db
increase in PSNR. Figure 7a plots for each test image the
difference in the PSNR of the two estimators as a function
of the PSNR of the bilinear estimator. All blue points
above zero indicate images for which the biprior method
was more accurate. In general, the biprior method
performs better. The increases in performance are sub-
stantial (3.7 db on average) and demonstrate the potential
value of the natural image statistics in estimating missing
or occluded points.
If the biprior estimate is based on only one direction,

then the increase in performance over bilinear is 1.0 db on
average, and if the two estimates are simply averaged
(given equal weight), then the average increase in
performance over bilinear is 3.2 db. Thus, all components
of the biprior estimator make a substantial contribution to
performance. If only the two neighboring pixel values are
used (i.e., applying f(s, t) in both directions and combining
with relative reliability), the increase in performance over
bilinear is 0.9 dB. This shows that the complex statistical
structure shown in Figures 2 and 3a is useful, but it also
shows that the additional flanking pixels make a sub-
stantial contribution to performance.
We also explored a number of related methods to

determine if significant improvements in performance

were possible. First, we applied exactly the same method
for the diagonal directions rather than cardinal directions
and found performance to be worse than even the simple
bilinear estimator. Further, combining the diagonal esti-
mates with the cardinal estimates did not improve the
performance of the biprior estimator. This suggests that
the pixels closest to the missing pixel carry most of the
useful information. Next, we explored one- and two-
dimensional kernels obtained with principal component
analysis (PCA). The one-dimensional kernels were
obtained for the 6 pixels on the two sides of the missing
pixel in the horizontal or vertical direction. The two-
dimensional kernels were obtained for the 24 surrounding
pixels in a 5 � 5 block. We then applied the current
conditional moment method for different choices of four
PCA kernels. In other words, for each test stimulus, we
applied the four kernels and used the resulting four values
as the context variables (r, s, t, u). None of these performed
well. Next, we explored one- and two-dimensional kernels
obtained using a recent method (accuracy maximization
analysis) that finds kernels that are optimized for specific
identification and estimation tasks (Geisler, Najemnik, &
Ing, 2009). In the one-dimensional case, we found that the
AMA kernels were essentially equivalent to (covered
approximately the same subspace as) the four kernels
corresponding to the separate 4 pixels in the horizontal or
vertical direction and did not produce a significant
improvement in performance. In the two-dimensional
case, we found that the four AMA kernels performed

Figure 6. Estimation of a missing color channel. Plots show the optimal estimate of the missing color value given the observed color
values on the horizontal and vertical axes. (a) Estimation of missing R, G, or B camera responses. (b) Estimation of missing L, M, or S
cone responses. Gray indicates no data.
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much better than the estimates based on only one direction
but did not perform better than the combined vertical and
horizontal estimates. Finally, we tried combining the
horizontal and vertical estimates with the full recursive
table (Equation 7) and found only a very slight increase
(less than 1%) in performance over using Equation 6.
While none of these analyses is definitive, together they
suggest that the biprior estimator makes near optimal use
of the local image structure in natural images for the 2D
missing image point task.

Estimation of a high-resolution image
from a low-resolution image

For measuring the accuracy of the upsampling methods,
the test images were blurred by a 3 � 3 Gaussian kernel,
downsampled by a factor of two in each direction, and

then upsampled using one of four methods: biprior,
bilinear, spline, and bicubic upsampling. Bilinear upsam-
pling uses linear interpolation of the two nearest neigh-
bors, applied in both directions. Spline upsampling uses
cubic interpolation of the four nearest neighbors (along a line)
in both directions. Bicubic upsampling uses full cubic
interpolation of the 16 (4 � 4) nearest neighbors. Biprior
upsampling used tables for x points having 256 levels (8 bits)
each for r, s, and t. The horizontal and vertical estimates
for the x points were then combined using the recursive
table (see Equation 7 and Figure 4b). These estimated x
points were then used as the four flanking points to
estimate the y points. One final point in each 3 � 3 block
(a z point not shown) was estimated by combining vertical
and horizontal estimates from the flanking estimated y
points, using the recursive table. The results are shown in
Figure 7b. The biprior estimator performs substantially

Figure 7. Performance in three estimation tasks. (a) Estimation of missing or occluded image points. The difference in peak signal-to-noise
ratio (PSNR) between the biprior and bilinear estimators for the 349 test images, as a function of the PSNR of the bilinear estimator, is
plotted. Each point represents a test image; points above zero indicate better performance for the biprior estimator. The average increase
in PSNR across all test images is 3.7 db. (b) The difference in PSNR for upsampling of the 349 test images as a function of the PSNR of
the method is indicated on the horizontal axis. (c) Comparison of bilinear and biprior interpolation along a segment of scan line from a test
image. (Note that every other interpolated scan line, like this one, contains no original image pixels.) (d) Difference in PSNR between
optimal estimator and linear estimator (linear regression) as a function of the PSNR for the linear estimator. The upper plot is for RGB
images and the lower plot for LMS images. The values of PSNR are computed in the CIE L*a*b* color space.
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better than the standard methods on all the test images,
demonstrating the potential value of the measured natural
image statistics in decoding photoreceptor (or ganglion
cell) responses. As in the case of estimating the missing
point, all components of the biprior estimator make a
substantial contribution to performance. However, unlike
missing point estimation, using only the reliability to
combine horizontal and vertical estimates (Equation 6) did
not work as well as using the recursive table, presumably
because of the smaller variation in relative reliability (red
curve in Figure 4a).
A closer look at the differences between bilinear and

biprior estimates is shown in Figure 7c, which plots the
bilinear (blue) and biprior (red) estimates against the
original image points (black) for a typical segment of a
scan line from a test image.
Figures 8 and 9 compare the original and the down-

sampled input images with the upsampled images
obtained using the biprior, bilinear, and bicubic methods.
In addition to largely maintaining the original contrast, the
biprior method does a better job of restoring detail.
Similar behavior is seen with all the images we have
inspected from the set of test images; indeed, the
improvement in MSE for these images relative to bilinear
(53% and 52%, respectively) is slightly less than the
median improvement of 58%. The upsampling of these
color images was obtained by applying the same estimator
to each color channel. The relative improvement in MSE

of the biprior estimator for these color images is only very
slightly less (about 1%) than for the grayscale images on
which the image statistics were learned. This demonstrates
the robustness of the image statistics. Figure 9 also
demonstrates the robustness of the image statistics in that
the training set contained no human-made objects or
human faces.

Estimation of a missing color channel

To test the performance accuracy of the Bayes optimal
estimators for missing color channels, we separately
removed each channel and then estimated the value of
that channel at each pixel location in each test image. We
quantified the estimation accuracy by the mean squared
error between the estimated and original colors in the CIE
L*a*b* uniform color space. The average increase in
PSNR of the optimal estimate over that of linear regres-
sion is as follows for each color channel: (R, G, B) =
(1.2 db, 0.59 db, 0.93 db) and (L, M, S) = (1.3 db, 0.91 db,
2.3 db). Note that linear regression incorporates all the
pairwise correlations between the color channels (i.e., the
full covariance matrix). Also, note that there are many
locations in the color spaces of Figure 6 for which there
is no data (the gray areas), and thus, one might wonder
if performance would be better if the spaces were filled
in better. In fact, this is not an issue. For the random set
of test images, there were very few occasions when an
empty location was encountered (less than 1 pixel per two
images).

Figure 8. Comparison of upsampling based on natural scene
statistics (biprior method) with standard methods based on
bilinear and bicubic interpolation. This is a representative example
from the 349 test images; the reduction in mean squared error for
biprior relative to bilinear is 53%, whereas the median reduction is
58%. The large image in the upper left panel is the original image
and the inset is the downsampled input image.

Figure 9. Comparison of upsampling based on natural scene
statistics (biprior method) with standard methods based on
bilinear and bicubic interpolation. Images of faces and human-
made objects were not in the training set of images. Thus, this
example demonstrates the robustness of the statistics.
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Estimation accuracy was not equally good for each
color channel in an image. The percentage of images
where each channel was easiest to estimate are as
follows: (R, G, B) = (62%, 26%, 12%) and (L, M, S) =
(78%, 22%, 0%). Figure 7d plots the difference in PSNR
between the optimal estimator and the linear estimator
(linear regression) as a function of the PSNR for the linear
estimator, for the channel that was easiest to estimate.
(Usually, the channel that was easiest to estimate was the
same for the optimal and linear estimators, but in a small
percentage of cases, the best channel was different.) The
upper panel plots accuracy for a missing R, G, or B
channel and the lower panel for a missing L, M, or S
channel. Points above the horizontal line indicate
images where the optimal estimate was more accurate
than the linear regression estimate.
Several randomly selected examples are shown in

Figure 10. The first column shows the original image.
The second column shows the image after a color channel
has been removed (the channel values set to zero). The
third column shows the result of applying the optimal
estimator. Finally, the fourth column shows the result of
the linear regression estimator. Although the color is not
accurately reproduced, it is nonetheless surprising how
natural the estimated images in the third column look, in
the sense that one would be hard-pressed to say that a

color channel had been estimated without seeing the
original. The estimates based on linear regression are also
impressive, but they tend to look either too uniform or too
purple/violet in color. For example, notice the lack of
browns and tans in the bottom three rows, the purple
tinted sky in the second row, and the pink tinted leaves in
the first row. Thus, it appears that the statistics in Figure 6
capture substantial color redundancy in natural outdoor
images that is not captured by linear regression (e.g.,
Gaussian models).

Discussion

A direct conditional moment approach was used to
measure joint statistics of neighboring image points in
calibrated grayscale and color natural images. Specifi-
cally, optimal (MMSE) estimators were measured for the
tasks of estimating missing image points, estimating a
higher resolution image from a lower resolution image
(super resolution), and estimating a missing color channel.
In the different cases, the measured estimators are
functions of two, three, or four neighboring image points.
In general, we find that the estimation functions are

Figure 10. Estimation of a missing color channel. In the first row, the B channel is estimated. In the other rows, the R channel is estimated.
In row 3, the linear estimate is more accurate than the optimal estimate. Interestingly, the optimal estimate appears more “natural” in color,
which was generally true.
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complex but also relatively smooth and regular (see
Figures 2–6). Importantly, the MMSE functions have no
obvious forms of invariance, except for an expected
diagonal symmetry. The lack of invariance implies that
the various simplifying assumptions of invariance that are
typical in less direct measurement methods probably miss
important statistical structure in natural images. This
conclusion is clearest for the invariance assumptions
implicit in the preprocessing transformations often applied
to training signals (e.g., subtracting off the local mean or
subtracting and scaling by the local mean), but it probably
holds for a number of other invariance assumptions as
well.
To begin exploring the implications of the measured

statistics, we compared the performance of the Bayesian
MMSE estimators with standard methods. We find that
against objective ground truth, the MMSE estimators
based on natural image statistics substantially outperform
these standard methods, suggesting that the measured
statistics contain much useful information. Thus, our
results have potentially important implications for under-
standing visual systems and for image processing. Specif-
ically, given the demonstrated usefulness of the statistics,
it seems likely that these statistics have been incorporated,
at least partially, into biological vision systems, either
through evolution or through learning over the life span.
Furthermore, because the measured statistics are so rich
and regular, they make many predictions that should be
testable in psychophysical experiments.
For example, the task of estimating missing image

points could be translated into psychophysical experi-
ments using a paradigm similar to that of Kersten (1987),
where observers are asked to estimate the grayscale value
at the missing image points. The natural image statistics
measured in Figures 2 and 3 make many strong predic-
tions. Whenever the values of r and u are below s and t in
r, s, t, u space (see Figure 3), observers are predicted to
estimate gray levels above the average of s and t, and the
opposite when r and u are above s and t. Further, the
uncertainty in the observers’ estimates (e.g., psychometric
function slopes) should be greater in those parts of the
space where the standard deviations of the conditional
moment distributions are greater (see Figure 2b).
Similarly, the task of estimating a higher resolution

image from a lower resolution image could be translated
into psychophysical experiments where observers are
asked to compare altered foveal image patches with
unaltered patches presented in the periphery. Specifically,
if the visual system exploits the natural image statistics in
Figures 4b and 5b, then a foveal patch that corresponds to
the optimal upsampled estimate from the half-resolution
version of the patch should be the best perceptual match to
the (unaltered) patch presented at the appropriate eccen-
tricity. Such predictions could be tested by varying the
foveal patch around the optimal estimate.
The task of estimating the missing color channel is

probably not so directly translatable into psychophysical

experiments. However, the joint prior probability distribu-
tion represented by the conditional moments in Figure 6,
and the other moments not shown, could play a role in
understanding how photoreceptor responses are decoded.
For example, Brainard et al. (2008) have shown that
estimates of color names from the stimulation of single
cones (Hofer, Singer, & Williams, 2005) is moderately
predictable using a Bayesian ideal estimator that takes
into account the spatial arrangement of the subjects’ L, M,
and S cones, as well as the prior probability distribution
over natural images. They assumed that the prior is
Gaussian and separable over space and color. The present
statistics show that the prior over color is not Gaussian
and that color estimation is more accurate if the joint
statistics are taken into account. Thus, the present results
may lead to somewhat different predictions for estimation
experiments like those of Hofer et al. (2005).
The optimal estimators for the present tasks depend on

both the statistical properties of the images in the training
set as well as the spatial filtering and noise characteristics
associated with the imaging system capturing the images.
This suggests that there may be many different scientific
and practical applications for the conditional moment
approach described here. For example, the statistics of
medical images, microscopic images, satellite images, and
diagnostic images in manufacturing and safety inspection
are likely to be different in detail from the natural images
considered here. Measurement of conditional moments for
these other classes of image could potentially lead to a
better understanding of their statistical structure and to
substantially improved resolution, interpolation, and/or
noise suppression. In general, the conditional moment
approach may be applicable and useful whenever there is
a sufficiently large set of training images. The approach
could also be applied to natural signals other than natural
images.
An advantage of the simple conditional moment

approach is that it can be applied easily to arbitrarily
large training sets, allowing relatively precise measure-
ments of joint statistics. The number of training signals
here was on the order of 1010 and much larger training
sets are possible. However, measuring the conditional
moments is not feasible once the signal dimensionality
becomes sufficiently high (although the dimensionality
can be extended somewhat by measuring recursive condi-
tional moments that take into account reliability; see
Equations 6 and 7 in the Methods section). In high
dimensions, parametric models are the most viable
approach. Nonetheless, even when the dimensionality is
high, conditional moments measured in lower dimensions
may be useful for constraining parameters and testing the
assumed forms of invariance in the parametric models. An
important two-dimensional example of this was the
discovery that the unsigned magnitudes of nearby orthog-
onal wavelet values are positively correlated, even when
their signed values are uncorrelated (Buccigrossi &
Simoncelli, 1999).
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The conditional moment approach works very well for
the estimation tasks described here because these tasks are
inherently low dimensional. The missing color task is
exactly three-dimensional, and hence, there is sufficient
data to accurately determine the full MMSE estimators.
For the two-dimensional missing point task, we demon-
strated that the relevant information is highly concentrated
in the neighboring 4 pixels in the horizontal and vertical
directions. Our analyses are not definitive but nonetheless
suggest that substantially better performance cannot be
obtained by moving to higher dimensions. Similar
conclusions are likely for the two-dimensional upsampling
(super resolution) task. However, for tasks that are
inherently higher dimensional (e.g., that involve integrat-
ing information over larger spatial areas), the conditional
moment approach will be less useful.
With respect to practical application, it is worth noting

that the estimators described here consist of fixed tables
and hence can be applied by a simple lookup (albeit with
substantial memory requirements for the tables). (Of
course, parametric models in similarly low-dimensional
spaces could also be tabled.) The estimation functions also
appear to be relatively smooth, so it may be possible to
find simple formulas that provide close approximation.
Could the conditional moment approach be useful for

practical image processing tasks? Our goal here is to
characterize image statistics rather than develop image
processing algorithms. Nonetheless, we have made some
preliminary comparisons with existing algorithms. Figure 11
shows a comparison with various recent super resolution
(upsampling) algorithms (Fattal, 2007; Freeman et al.,
2002; Glasner et al., 2009; and a commercial algorithm,
Perfect Resize 7.0), rank ordered by the mean squared error
from the original image (in parentheses). The upsampling is
by a factor of 4 and only a part of the image is shown, in
order to make the differences between the algorithms more
visible. Although the biprior algorithm has the lowest MSE,
the smoothness of the pupil boundary is better captured by
some of the other algorithms. On the other hand, the texture
of the hat and the inside of the iris is better captured by the
biprior algorithm. In addition, some of the other algorithms
are computationally intensive; the Freeman algorithm is
reported to take over 30 min to produce a 0.25-MB (512 �
512) image, the Glasner algorithm 90 s, and the Fattal
algorithm 6 s. On the other hand, the biprior algorithm
produces a 12-MB (4000 � 3000) image in about 0.1 s.
Thus, there may be upsampling applications where the
conditional moment approach will have practical value.
To get some idea of whether the conditional moment

approach might be useful for other image processing
tasks, we put together a few unoptimized test algorithms.
Their performance suggests that the conditional moment
approach is promising or, at least, may provide useful
insight in developing practical algorithms. A first pass at
interpolation of Bayer images (demosaicing digital cam-
era images) gave mean squared error (MSE) performance
better than the AHD algorithm (e.g., see Hirakawa &

Parks, 2005), a common current standard, and comparable
to more recent algorithms (Li et al., 2008; also see Mairal,
Elad, & Sapiro, 2008). A first pass at denoising (for
additive Gaussian noise) gave MSE performance equal to
adaptive Weiner filtering (MatLab wiener2; Lim, 1990). A
first pass at lossless compression gave compression ratios
in between those of PNG and JPEG-LS, the best current
standards (for references and discussion, see Santa-Cruz,
Ebrahimi, Askelof, Larsson, & Christopouos, 2000).
Another potential application is in color reproduction. To
enhance color reproduction, video displays have begun
using a 4th color channel (e.g., the Sharp Quattron). As in
our third task, the conditional moment method could be
used to find the Bayes optimal estimate of the 4th (yellow)
channel values given the RGB values and hence poten-
tially improve the quality (and accuracy) of standard RGB
imagery displayed on a 4-channel device.
Another future direction is to investigate the underlying

causes of the complex statistical regularities reported here.
For the first two tasks, inspections of the image locations

Figure 11. Comparison of different upsampling (super resolution)
algorithms. The original image was 512 � 512 and input was
128 � 128. The numbers in parentheses are MSE from the original
image. The original and input images were provided by R. Fattal
(http://www.cs.huji.ac.il/~raananf/projects/upsampling/results.
html) and the upsampled images for the Fattal, Freeman, and
Glasner algorithms were provided by M. Irani (http://www.wisdom.
weizmann.ac.il/~vision/SingleImageSR.html). Some appreciation
for the sources of some of the distortions seen in the upsampled
images can be obtained by inspecting the input image.
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where deviations from the linear prediction are greatest
suggest (not surprisingly) that the causes are at least in
part related to the properties of well-defined edges (see
Figure 7c) but much remains to be done.
The full set of natural images and many super-resolution

examples are available at http://www.cps.utexas.edu/
natural_scenes.

Appendix A

Gaussian and log Gaussian models for
optimal interpolation between two points

Here, we derive the optimal estimate of the central point
in optimal interpolation under the assumption that the
underlying distributions are Gaussian and log Gaussian. A
conditional Gaussian distribution p(xajxb) has a mean
value that is a linear function of xb and a covariance that is
independent of the value of xb. Therefore, in the case of
interpolation between two points, the optimal estimate is
given by

x̂opt ¼ w1sþ w2tþ w0: ðA1Þ

However, there are two empirical constraints that also
hold in our case. First, when s = t, we always find (in
agreement with intuition) that

x̂opt ¼ s ¼ t; ðA2Þ

which implies that w0 = 0. Second, we observe (in
agreement with intuition) symmetry about the diagonal
(see Figure 1b), which requires that

w1 ¼ w2; ðA3Þ

which implies that w1 = w2 =
1

2
and hence x̂opt =

sþ t

2
. The

same relations hold for a log Gaussian distribution, except

log x̂opt =
log sþ log t

2
or x̂opt =

ffiffiffiffi
st

p
(the geometric average).

Implications of standard transformations
of training signals

Two of the standard preprocessing steps in measuring
natural signal statistics are: (a) subtract off the mean of
each training signal to obtain a collection of zero mean
signals or (b) subtract off the mean and then divide by the
mean to obtain a collection of normalized zero mean
signals (e.g., signed contrast signals). Even when these
steps are not carried out explicitly, they are frequently an
implicit component of statistical analyses. These steps are
intuitively sensible because they remove seemingly

irrelevant information when the goal is to characterize
the statistics of signal shape. However, they correspond to
invariance assumptions that can lead to missed informa-
tion. To see this, consider the case of measuring the
expected value function for the central pixel given the two
neighboring pixel values: f(s, t) = E(xjs, t) (see Figures 3a
and 3b).

Transforming training signals to zero mean

Let (si, xi, ti) be an arbitrary original training signal and
let mi be the local mean (si + ti) / 2 that is subtracted off.
The transformed values of si, xi, and ti are given by

s0i ¼ si j mi; x
0
i ¼ xi j mi; t

0
i ¼ ti j mi: ðA4Þ

In this case, for all possible learning algorithms:

if ðs0i; t0iÞ ¼ ðs0j; t0jÞ; then Eðx0ks0i; t0iÞ ¼ Eðx0ks0j; t0jÞ: ðA5Þ

What is the set of (sj, tj) for which (sVi, tVi) = (sVj, tVj)? For any
given (si, ti), the (sj, tj) must satisfy the following two
equations:

sj j mj ¼ si j mi; and tj j mj ¼ ti j mi: ðA6Þ

Hence,

sj j tj ¼ si j ti: ðA7Þ

This implies that subtracting off the mean is a valid
preprocessing step if and only if

Eðx0ksþ !; tþ !Þ ¼ Eðx0ks; tÞO!: ðA8Þ

If this property were true in natural images, then the plot
of $x̂opt(s, t) in Figure 3b would have a constant value
along any line parallel to the central diagonal, which does
not hold except for the central diagonal itself. In other
words, applying the preprocessing step of subtracting the
mean would miss much of the important statistical
structure shown in Figure 3b. The same result holds if
the subtracted mean is (si + xi + ti) / 3.

Transforming training signals to a normalized
zero mean

Now suppose the transformed training stimuli are given
by

s0i ¼
si j mi

mi
; x0i ¼

xi j mi

mi
; and t0i ¼

ti j mi

mi
: ðA9Þ
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Again, for all possible learning algorithms:

if ðs0i; t0iÞ ¼ ðs0j; t0jÞ; then Eðx0ks0i; t0iÞ ¼ Eðx0ks0j; t0jÞ: ðA10Þ

What is the set of (sj, tj) for which (sVi, tVi) = (sVj, tVj)? For any
given (si, ti), the (sj, tj) must satisfy the following two
equations:

sjjmj

mj
¼ sijmi

mi
; and

tjjmj

mj
¼ tijmi

mi
: ðA11Þ

Hence,

sj ¼ mj

mi
si; and tj ¼ mj

mi
ti: ðA12Þ

This implies that subtracting off and then dividing by the
mean is a valid preprocessing step if and only if

Eðx0k!s; !tÞ ¼ Eðx0ks; tÞO!: ðA13Þ

If this property were true in natural images, then the plot
of $x̂opt(s, t) in Figure 3b would have a constant value
along any line passing through the origin, which does not
hold except for the central diagonal itself. Thus, applying
this preprocessing step would also miss much of the
important statistical structure. A similar result holds if the
subtracted mean is (si + xi + ti) / 3.
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