
Constrained sampling experiments reveal principles of
detection in natural scenes
Stephen Sebastiana,b, Jared Abramsa,b, and Wilson S. Geislera,b,1

aCenter for Perceptual Systems, University of Texas at Austin, Austin, TX 78712; and bDepartment of Psychology, University of Texas at Austin, Austin,
TX 78712

Edited by Randolph Blake, Vanderbilt University, Nashville, TN, and approved June 2, 2017 (received for review November 27, 2016)

A fundamental everyday visual task is to detect target objects
within a background scene. Using relatively simple stimuli, vision
science has identified several major factors that affect detection
thresholds, including the luminance of the background, the contrast
of the background, the spatial similarity of the background to the
target, and uncertainty due to random variations in the properties
of the background and in the amplitude of the target. Here we use
an experimental approach based on constrained sampling frommul-
tidimensional histograms of natural stimuli, together with a theo-
retical analysis based on signal detection theory, to discover how
these factors affect detection in natural scenes. We sorted a large
collection of natural image backgrounds into multidimensional
histograms, where each bin corresponds to a particular luminance,
contrast, and similarity. Detection thresholds were measured for a
subset of bins spanning the space, where a natural background
was randomly sampled from a bin on each trial. In low-uncertainty
conditions, both the background bin and the amplitude of the
target were fixed, and, in high-uncertainty conditions, they varied
randomly on each trial. We found that thresholds increase approxi-
mately linearly along all three dimensions and that detection accuracy
is unaffected by background bin and target amplitude uncertainty.
The results are predicted from first principles by a normalized
matched-template detector, where the dynamic normalizing gain
factor follows directly from the statistical properties of the natural
backgrounds. The results provide an explanation for classic laws of
psychophysics and their underlying neural mechanisms.
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Visual systems are the result of evolution by natural selection,
and, as a consequence, their design is strongly constrained by

the properties of natural visual stimuli and by the specific visual
tasks performed to survive and reproduce. Thus, to understand
the human visual system, it is critical to characterize natural vi-
sual stimuli and performance in natural visual tasks (1, 2).
Perhaps the most fundamental visual task is to identify target

objects in the natural backgrounds that surround us. It is known
that the specific properties of a background can have a strong
influence on detectability (Fig. 1). For example, the detectability
of a target pattern with given amplitude decreases with increases
in background luminance (3, 4), background contrast (5–7), and
the similarity of the spatial properties of the background to those
of the target (8–12). In addition to the direct effects of such
background properties, there are other factors that affect de-
tection performance. Specifically, under natural conditions, the
strength (amplitude) and location of the target often randomly
vary on every occasion, and the target typically appears against a
different background scene on every occasion. The uncertainty
created by the random amplitude and location of the target
(“target uncertainty”) and the random variation in the properties
of the background (“background uncertainty”) are additional
factors that can reduce detection performance (12–15).
What is relatively unknown are (i) how these various factors

individually affect detection accuracy in natural scenes, (ii) how
they combine in affecting detection accuracy in natural scenes,
and (iii) how these factors and the underlying neural mechanisms

are related to the statistical properties of natural scenes. Although
there have been a number of studies of detection in natural
backgrounds (16–23), they have not directly addressed these
questions, and have either tested only a small number of natural
stimuli (16, 17, 19, 20), tested natural stimuli with altered sta-
tistical properties (21, 22), or used experimental paradigms not
representative of natural detection tasks (16, 18–20, 23). These
latter studies are not as representative of natural tasks, because
observers were allowed to directly compare the same image with
and without the added target, an advantage that is not normally
available under real-world conditions.
Here we address the three questions above using an experi-

mental approach based on sampling from multidimensional his-
tograms of natural stimuli, together with a theoretical analysis
based on signal detection theory. This constrained sampling ap-
proach is efficient and could be used to address similar questions
for other natural tasks. The first step is to obtain a large collection
of calibrated natural images. These images then are divided into
millions of background patches that are sorted into narrow bins
along dimensions of interest. In the present study, each histogram
bin corresponds to a narrow range of mean luminance, contrast,
and similarity of the target to the background patch. Next, de-
tection performance for simple targets is measured by sampling
from a sparse subset of bins spanning the space. In one set of
experiments, performance is measured one bin at a time (no
background and amplitude uncertainty), and, in the second set of
experiments, the bin is randomly selected on each trial (high
background and amplitude uncertainty). In both sets of experi-
ments, the location of the target (if present) is fixed; i.e., we did
not consider location uncertainty (Discussion). The experiments
revealed lawful effects of luminance, contrast, and similarity on
detection performance, and showed that humans are remarkably
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unaffected by background and amplitude uncertainty. These aspects of
human detection performance are predicted quantitatively from first
principles by a signal detection analysis of the natural image stimuli.
This analysis provides an understanding of the computational princi-
ples and evolutionary pressures that underlie the classic laws of visual
psychophysics and their associated neural mechanisms.

Results
The two major aims of the present experiments were (i) to de-
termine how the local luminance, contrast, and target similarity
of natural backgrounds affect the detectability of targets and
(ii) to determine how uncertainty about the background properties
and target amplitude affect detectability.

Natural Background Stimuli. To obtain stimuli for the experiments,
we analyzed a large collection of high-resolution gray-scale nat-
ural images (Fig. 2A and Methods). The 1,204 images were di-
vided up into millions of background patches that were the same
size (0.8° wide) as the targets used in the detection experiments.
For each patch, the mean luminance, root-mean-squared (RMS)
contrast, and phase-invariant similarity to the target were mea-
sured (see Methods for definitions of these measures). These
values were used to sort the patches into 3D histograms. Fig. 2B
shows the histograms for the two targets used in the experiments.
(Note that similarity depends on both the target shape and size
and hence separate histograms were measured for the two tar-
gets.) Most of the 1,000 bins in each of these histograms con-
tained many hundreds of patches, and all of the patches within a
bin had nearly the same mean luminance, contrast, and similarity.
However, we note that not all image patches fell into a bin, pri-
marily because we restricted the contrast to a maximum of 0.32
RMS and the mean luminance to 0.55 of the maximum luminance
in the image—the maxima for which it is practical to measure
thresholds on standard displays, like those in the present experi-

ments (Methods). Fig. 2C shows single background patches (0.8°
wide), each randomly sampled from one of 25 bins with the same
mean luminance but different RMS contrast and similarity.

Experiment 1: Detection Thresholds with Background Context Present.
In the first experiment, detection thresholds were measured in the
fovea along each of the three dimensions separately, with the
other two held fixed at their median values. Thresholds were
measured for two different targets (Fig. 2B), one having a single
dominant orientation [a windowed 4-cycles-per-degree (cpd) grat-
ing] and one with two dominant orientations (a windowed 4-cpd
plaid). To obtain the thresholds, psychometric functions were
measured in a single-interval identification task with feedback
(Fig. 2D). On each trial, a background patch was randomly sam-
pled without replacement from the bin being tested. The back-
ground that was displayed also included a context region 4.3° wide
surrounding the target region. The rest of the display contained a
fixed luminance equal to that of the bin. In experiment 1, both the
target amplitude and the background bin were “blocked” (i.e.,
fixed for all trials of a block). Randomly, on half of the trials, the
target was added to the background, and the subject reported
whether the target was present or absent. Thresholds were defined
to be the target amplitude giving 69% correct decisions (Methods).
(Note that most studies report thresholds in units of contrast.)
The average amplitude thresholds for three subjects are shown in

Fig. 3; Fig. 3, Upper is for the grating target, and Fig. 3, Lower is for
the plaid target (results for individual subjects were similar; see Fig.
S1). Each plot shows the threshold (solid symbols) as a function of the
value along a background dimension. For both targets, the threshold
amplitude increased approximately linearly with local mean lumi-
nance in natural backgrounds (solid lines), in agreement with
the classic finding of Weber’s law reported for detection in
uniform backgrounds (3, 4). Similarly, the threshold amplitude in-
creased linearly with background RMS contrast (at contrasts above a
few percent), in agreement with the classic finding for detection in
white noise (7) and more recent findings for targets in 1/f noise (22,
24) and in Gaussianized natural backgrounds (22). Finally, amplitude
threshold increases approximately linearly with the similarity of the
background to the target, a result not previously reported.
The primary conclusion from this experiment is that thresholds

increase approximately linearly along each of the cardinal direc-
tions for detection in natural backgrounds, with different slopes
and intercepts for each dimension and target. In Signal Detection
Analysis of Detection Under Blocked Conditions, we show that this
entire pattern of results follows directly from a principled signal
detection theory analysis of detection in natural images.

Experiment 2: Detection Thresholds with Background Context Removed.
The first experiment measured detection thresholds when the
backgrounds were substantially larger (4.3° wide) than the target
(0.8° wide). It is possible that the surrounding region is helpful
because it provides information about the properties of the back-
ground in the target region. To examine the effect of the sur-
rounding region on threshold, we carried out a second experiment
where the background was windowed to the size of the target. This
experiment also provided some of the baseline data for experiment
3 that measured the effects of background and target amplitude
uncertainty. For practical reasons (see experiment 3), we fixed the
luminance at the median value in both experiments 2 and 3.
Fig. 4 plots the detection thresholds as a function of contrast

and similarity (individual subject data are in Fig. S2). For compar-
ison, the contrast and similarity thresholds from experiment 1 also
are plotted, in a lighter shade. For both targets, threshold still
increased linearly with the background contrast and similarity.
However, the overall magnitude of the thresholds was lower.
One possibility is that the decrease is due to reduced uncertainty
about the location of the target (25, 26). However, between tri-
als, a fixation point was kept at the center of the target location,

Fig. 1. Demonstration of the major dimensions of masking. In each case, the
same target (a windowed sinewave grating) is added to the backgrounds on the
left and the right. The target is less visible on the left. (Top) backgrounds are
uniform with higher luminance on the left. (Middle) The backgrounds are 2D
Gaussian noise with higher contrast on the left; mean luminance is the same on
both sides. (Bottom) Backgrounds are 1D Gaussian noise with a horizontal ori-
entation on the left; contrast and mean luminance are the same on both sides.
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and, as will be shown in Signal Detection Analysis of Detection
Under Blocked Conditions, the differences between experiments
1 and 2 are predicted by a simple model observer with no posi-
tion uncertainty. Thus, it is likely that the primary effect of re-
moving the surrounding context region was to remove some of
the background’s power from under the target.
In experiment 3, we consider conditions where the background

bin and target amplitude randomly varied from trial to trial.
First, however, we consider potential explanations for the results
from the blocked conditions (experiments 1 and 2) based on the
statistical properties of natural backgrounds.

Signal Detection Analysis of Detection Under Blocked Conditions. An
obvious question is why thresholds should vary approximately

linearly along all three dimensions. To gain some insight into this
fact, we evaluated a simple signal detection model known as a
matched-template (MT) observer (Fig. 5A). On each trial, the
MT observer computes the dot product of a template f ðx, yÞ with
the input image Iðx, yÞ,

R= f · I =
X

x, y
f ðx, yÞIðx, yÞ, [1]

where the template is the target (with amplitude equal to 1.0)
divided by its energy (the energy of the target is the dot product
of the target with itself). Note that the dot product is equivalent
to computing the response of a receptive field exactly matching
the luminance profile of the target. Also note that this template
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Fig. 2. Stimuli for experiment 1. (A) Example 400 × 400 pixel regions from several of the 4,284 × 2,844 full images. (B) Three-dimensional histograms along
the dimensions of luminance, RMS contrast, and similarity, for the two targets used in the experiments: a windowed 4-cpd grating and a windowed 4-cpd
plaid. The similarity depends on the specific target, and, hence, there are two histograms (Methods). For each histogram, there are 10 bins along each di-
mension (bin widths increase geometrically along each dimension), for a total of 1,000 bins. The ranges for each dimension were restricted to those over
which it was possible to measure detection thresholds on a standard display screen without clipping (luminance is 0.08 to 0.55 of image maximum, contrast =
0.05 to 0.32 RMS, similarity range for grating target is 0.15 to 0.45, and similarity range for plaid target is 0.24–0.47). The color scale indicates the number of
patches falling in the bins. (C) Example 101 pixel diameter (0.8°) background patches having the same mean luminance and various contrasts and similarities
to the grating target. (D) Timeline of a single trial (excluding the response and feedback intervals). The psychometric function for each tested bin was based
on at least 350 trials. In the entire experiment, no background patch was presented twice.
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response is sensitive to the phase of the input, whereas the
similarity measure (which is also based on the shape of the
target) is insensitive to phase. If the template response R exceeds
a decision criterion value γ, then the observer reports that the
target is present; otherwise, the observer reports that it is absent.
The MT observer is the optimal (ideal) observer when the target
is known (as it is here) and the background is Gaussian white
noise (7, 27, 28), and for “narrow band” targets, it often is not
too far from optimal if the background is Poisson white noise or is
correlated Gaussian noise. Although natural image backgrounds
have a more complex statistical structure, the MT observer
(although not optimal) is a simple, principled signal detection
model, and hence a good starting point.
The purple histograms in Fig. 5B show the distributions of

template responses for the grating target, for all of the background
patches in three of the 1,000 bins in Fig. 2B. If a target of am-
plitude a is added to the background, then the distribution remains
identical in shape, but is shifted to the right by a (green histo-
grams). The distributions are approximately Gaussian, as indi-
cated by the curves, which are Gaussian distributions having the
same means and SDs as the measured distributions. We find that
the distributions of template responses are approximately Gaussian
for almost all of the bins (Fig. S3; see also ref. 29).
If the goal of the observer is to be as accurate as possible in

our experiments, where the target is present on half of the trials,
then the decision criterion should be placed halfway between the
two distributions (γ = a=2). In Fig. 5B, the target amplitudes have
been set so that the accuracy of the MT observer is 85% correct
for the three example bins. In our experiments, we define the
amplitude threshold at to be the amplitude producing 69% correct
responses (d′= at=σ = 1.0). In this case, the MT observer’s thresh-
old is simply the SD of the template responses for that bin,

at = σðL,C, SÞ, [2]

where L, C, and S represent the luminance, contrast, and similarity,
respectively.
The symbols in Fig. 6 show the measured SDs of the template

responses, and hence the MT observer’s thresholds, for both
targets, for all 2,000 bins. To summarize these image statistics,

we fit the following formula, which is separable in luminance,
contrast, and similarity:

σðL,C, SÞ= k0ðL+ kLÞðC+ kCÞðS+ kSÞ, [3]

where k0, kL, kC, and kS are free parameters (values in Fig. 6
legend). The lines in Fig. 6 show that this formula fits very well
(it accounts for 99.6% of the variance in the SDs), implying that
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the thresholds of the MT observer are essentially linear in all
three dimensions—multidimensional Weber’s law.
The prediction of linear threshold functions for each dimension

is an important result, but do the MT observer’s thresholds ac-
tually predict the variation in slopes and intercepts across the
different background dimensions and targets in experiments 1 and
2 (shown in Figs. 3 and 4)? To address this question, we first note
that, for detection in noise, humans never reach the absolute levels
of performance of the MT (ideal) observer, and thus the relative

performance of human and ideal observers is often compared by
introducing an overall efficiency parameter η, which effectively
scales up the variance of the MT responses or, equivalently, scales
up all of the MT observer’s thresholds by a constant (7, 12, 28, 30),

at = σðL,C, SÞ� ffiffiffi
η

p
. [4]

The black symbols in Figs. 3 and 4 show the predictions of the
MT observer for a single fixed value of the efficiency parameter
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randomly picked from the three bins on each trial. (C) Correlation between the MT observer’s and human observers’ thresholds for all thresholds in experiments 1 and
2. The symbols show the MT observer’s and human observers’ threshold for each condition in Figs. 3 and 4. The thin line is the best-fitting line through the origin.
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(η= 0.124). (To generate the predictions for experiment 2, we
measured and used the SDs of the template response for the
windowed backgrounds; see Fig. S4.) As can be seen, the values
of the slopes and intercepts across the three dimensions, for both
targets, and in both experiments, are predicted quite well from
the statistics of the template responses to natural backgrounds,
with only a single free scaling (efficiency) parameter. Fig. 5C
shows that the correlation between the predicted (with no effi-
ciency parameter) and observed thresholds for both targets in both
experiments was 0.98. These results show, at least for our targets,
that the detection mechanisms in the human visual system are
tightly matched to the statistical properties of natural scenes.

Experiment 3: Detection Thresholds with Background and Target
Amplitude Uncertainty. The third experiment measured the effect
on detection performance of randomly varying the background bin
and the target amplitude on every trial, because this sort of un-
certainty exists under natural conditions. As in experiment 2, we
fixed the luminance at the median value (only the contrast and
similarity were randomly varying). If we did not fix the luminance
bin, then the surrounding uniform region of the display would
either provide a nonnatural cue to the luminance (if it varied with
the natural background) or it would produce brightness contrast
artifacts (if it was kept at a fixed luminance). Using the psycho-
metric functions from experiments 1 and 2, we determined, for
each background bin, the target amplitudes corresponding to four
specific accuracy levels: 65%, 75%, 85%, and 95%. These target
amplitudes were determined separately for each subject. Perfor-
mance was measured for each of these accuracy levels, with the
background bin randomly selected on each trial but the accuracy
level blocked. Under these circumstances, both the target ampli-
tude and the background bin varied on each trial, unlike in ex-
periments 1 and 2, where both amplitude and background bin
were blocked. Fig. 7A, Left shows the accuracy in this random
condition plotted as a function of the accuracy in the blocked
conditions of experiment 1. Fig. 7B, Left shows a similar plot for
the windowed background conditions of experiment 2. If perfor-
mance were unaffected by background and target amplitude un-
certainty, then the data points should fall along the diagonal (solid
black) line. As can be seen, there is little if any effect of uncertainty,
even though subjects reported that the background appeared dra-
matically different from trial to trial.
This is a rather surprising result given the expected effects of

uncertainty on target detection. To understand why this is sur-
prising, consider the MT observer for target detection described
earlier. On each trial, the observer computes the dot product of
the background and template, and, if the dot product exceeds a
criterion, then the observer reports that the target is present. Fig. 5B
shows the distributions of template responses in three specific bins,
for a target amplitude producing 85% correct responses. If the
background bin and the amplitude of the target are fixed, as in
experiments 1 and 2, then the MT observer can maximize ac-
curacy by setting the criterion at the cross point of the two dis-
tributions in that bin ðγ = a=2Þ. For bin A, the SD is relatively
low, and hence the target amplitude and the criterion that pro-
duces 85% correct responses are relatively small (black line). For
bins B and C, the SDs are higher, and the target amplitudes and
the criterion that produces 85% correct responses are larger.
However, when the background bin randomly varies on every trial,
as in experiment 3, then no single criterion (gray line) can be in
the correct location for all bins. Thus, the maximum accuracy of
the MT observer must be lower in the uncertainty conditions. The
dashed curves in Fig. 7 A, Left and B, Left show the performance
of the MT observer, when its decision criterion is set so the MT
observer’s bias exactly equals the bias estimated from the subjects’
hits and false alarms at each accuracy level (see SI Text and Fig. S5
for details). The upper limit of MT observer performance in
natural images is reported in Fig. S6.

Another prediction of the MT observer is that there must be a
strong trade-off in the proportions of hits and correct rejections
as a function of the bin SD. The proportion of hits is the area
under the green distribution to the right of the criterion; the
proportion of correct rejections is the area under the purple
distribution to the left of the criterion. As can be seen in Fig. 5B,
the proportion of hits must increase as the bin SD increases, and
the proportion of correct rejections must decrease. The dashed
curves in Fig. 7 A, Right and B, Right show the dramatic trade-off
in the proportion of hits and correct rejections predicted by the
MT observer, as a function of the bin SD. The subjects’ propor-
tions (symbols) show that the measured trade-off is much smaller,
especially when the surround context is present (Fig. 7A), which is
the case under real-world conditions.
How are the human visual and decision-making systems able to

maintain sensitivity, and relatively constant hit and correct rejec-
tion rates, under conditions of background and target-amplitude
uncertainty? One possibility is that they effectively normalize the
template response by subtracting the mean and dividing by the SD
implied by the estimated luminance, contrast, and similarity (Fig.
7C). The effect of properly normalizing the template responses is
illustrated in Fig. 7D, which shows the distributions in Fig. 5B after
normalization. In the normalized space, the SDs all become 1.0,
and separation between the distributions becomes the de-
tectability d′. In this case, the same accuracy level in the blocked
and random conditions can be obtained with a single fixed crite-
rion for each accuracy level (which was blocked). Furthermore,
with this fixed criterion, the proportion of hits and correct rejec-
tions will not trade off as a function of bin SD.
Recall that the SD of the template response is a separable

product of the luminance, contrast, and similarity (Eq. 3). Also,
the grating and plaid targets integrate to zero, and hence the
target-absent distributions have a mean of zero. Thus, the re-
sponses of the normalized MT (NMT) observer are given by

Z=
R

k0
�
L̂+ kL

��
Ĉ+ kC

��
Ŝ+ kS

�, [5]

where L̂, Ĉ, and Ŝ are the estimated luminance, contrast, and
similarity in the target region. These three properties of the back-
ground might be estimated from the background region sur-
rounding the target region; this is plausible because the statistical
properties of natural images are spatially correlated (e.g., nearby
locations have similar contrasts). It is also possible that these
properties could be estimated in the target region; however, this
might be more difficult because the estimates would be corrupted
by the properties of the target, on the target-present trials.
To evaluate this hypothesis, we determined, separately, how

well luminance, contrast, and similarity could be estimated by a
simple linear model that combines measurements of the property
in both the target and surrounding regions (see SI Text and Fig.
S7). Such a linear weighting of local measurements is a plausible
neural computation. We find that the linear model estimates are
sufficiently accurate that Eq. 5, with a fixed criterion for each
accuracy level, can account for human performance quite well.
Specifically, the solid black symbols (and black solid line) in Fig. 7
A, Left and B, Left show the predictions of the NMT observer.
Also, for the surround context conditions (Fig. 7A, Right), the
NMT observer does a much better job than the simple MT ob-
server in accounting for the hit and correct rejection rates (Fig.
7A, Right, Inset and solid curves). Interestingly, for the windowed
conditions (Fig. 7B, Right), which are less natural, there is a
greater trade-off in hits and correct rejections. In this case, the
predictions of the two model observers are equally good (Fig. 7B,
Right, Inset), which would be predicted by partial or incomplete
normalization. This incomplete normalization is consistent with
evidence that the contrast normalization component of receptive
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fields in primary visual cortex extends beyond the linear summa-
tion component (31, 32). In the Supplementary Information, we
show that normalization by all three dimensions is necessary to
achieve the same detectability in random and blocked conditions,
although normalizing by contrast is the most important (Fig. S6).

Discussion
We used a constrained sampling approach to examine the factors
affecting detection of known targets in natural backgrounds. Back-
ground patches from a database of calibrated natural images were
sorted into a 3D histogram having the dimensions of mean lumi-
nance, RMS contrast, and (phase-invariant) similarity to the tar-
get. We then measured psychometric functions in single-interval,
blocked identification experiments in a subset of bins along the

three cardinal dimensions of the space, for a grating and a plaid
target. We found that amplitude thresholds increased approximately
linearly along all three dimensions, both when the background
region extended well beyond the target region (experiment 1) and
when the background was restricted to the target region (experi-
ment 2). We then showed that a simple MT observer predicted the
entire set of thresholds from both experiments with a single effi-
ciency parameter, whose effect is to scale all of the MT thresholds
by a single factor. In experiment 3, we examined the effects of
background and amplitude uncertainty by randomly sampling a
background on every trial from a randomly selected contrast and
similarity bin, where the amplitude of the target also depended on
the randomly selected bin. We found that, under these conditions,
there was essentially no effect of the uncertainty on accuracy, and
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Fig. 7. Comparison of detection performance for blocked and random conditions. (A) (Left) Percent correct detection in the random conditions as a function
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a modest effect of background bin SD on the proportion of hits
and correct rejections. These results cannot be explained by the
MT observer, but can be explained by an NMT observer that es-
timates the background luminance, contrast, and similarity in the
target region via linear weighted summation of the local mea-
surements of each property in the target region. This NMT observer
quantitatively accounts for almost all of the results from all three
experiments and shows (for our stimuli) that human thresholds in
natural backgrounds are accurately predicted from first principles.
The tight relationship between the NMT observer and human

observers must break down at very low contrasts, because the NMT
observer will perform perfectly (except for the effect of photon
noise) on backgrounds of zero contrast. Thus, viable models of
human observers based on the NMT observer would need to in-
clude another factor such as an additive constant representing a
fixed neural noise. Also, we have not yet measured thresholds over
the entire space in Fig. 2B; however, in pilot data (not presented
here), we have found that human thresholds are roughly separa-
ble, as implied by the natural scene statistics in Fig. 6.
Interestingly, it is known that MT observers fail to account for

significant aspects of human performance. For example, results
from classification image experiments strongly suggest that the
human visual system uses image features that deviate from those
of the MT observer (33–35). Thus, it is unlikely that the subjects
in our experiments are carrying out a computation directly equiv-
alent to applying a matched template. However, for detection in
white noise as a function of noise amplitude, it is known that the
effect of removing some fraction of pixels in a matched template
is to reduce efficiency by a fixed scale factor without affecting the
pattern of thresholds. We checked whether this invariance holds
for natural images, and found that it holds quite well for the
whole space of conditions in Fig. 6 (see SI Text). We conclude that
the pattern of thresholds observed in Fig. 6 and in experiments
1 and 2 (Figs. 3 and 4) are largely due the statistical structure of
natural backgrounds, and would be consistent with a range of
biologically plausible models. The results of experiment 3 (Fig. 7)
would seem to require that plausible models include normaliza-
tion mechanisms that are separable in luminance, contrast, and
similarity.
Perhaps surprisingly, we found that the histograms of template

responses are approximately Gaussian for all bins and both tar-
gets. It is well known that, in natural images, the response distri-
butions of oriented Gabor filters (like our grating target template)
are highly non-Gaussian, with sharp peaks at zero and heavy tails
(36, 37). One hypothesis is that this is due to the higher-order
structure (contours, edges, lines, etc.) in natural images. However,
the patches in any one of our bins contain such structure. Thus,
our results suggest, instead, that the heavy-tailed distributions
result from the mixture of SDs from the different bins (a mixture-
of-Gaussians model that does not depend on the local phase
structure of natural images). Also, if the template responses are
normalized by the patch luminance, contrast, and phase-invariant
similarity (Fig. 7), then they become Gaussian with the same
variance, for all bins. To the extent that cortical neuron responses
are consistent with such normalization, they will not provide a
sparse code in the sense of producing a heavy-tailed distribution of
responses to natural images (38).
It is also worth noting that any “neuron” having a linear re-

ceptive field can be regarded as a matched template. Hence the
SDs of the responses to natural stimuli of neurons having a
narrow-band linear receptive field will be the same or very similar
to those in Fig. 6. If one of the goals of single neurons in the visual
cortex is to identify the presence of features that match their re-
ceptive fields (under the real-world conditions of high uncertainty),
then there would be a benefit from normalization by background
luminance, background contrast, and phase-invariant similarity
of the background to the shape of the receptive field (Eq. 5).

Detection in the Real World. In experiments 1 and 2, stimulus
uncertainty was minimized by blocking both the target amplitude
and the bin from which the background was sampled. In exper-
iment 3, uncertainty was increased, but was still constrained by
blocking trials to a fixed level of accuracy. Under these circum-
stances, target amplitude and background properties covary in a
way that allows the NMT observer to adopt a single optimal fixed
criterion for the block. However, in the real world, there is generally
no reason to expect the amplitude and the background properties
to covary. Nonetheless, the NMT observer supports a simple op-
timal decision strategy. Under conditions where amplitude is un-
constrained, a rational strategy (cost function) is to maximize hit
rate for a given desired false-alarm rate—the same strategy used in
standard one-tailed statistical tests. For the NMT observer, this
cost function corresponds to placing the criterion at a fixed value.
For example, a criterion of 1.65 gives a false-alarm rate of 5% and
the optimal hit rate, independent of target amplitude and back-
ground properties. There is no such fixed criterion for the MT
observer. The NMT observer performs much better than the MT
observer when the desired false-alarm rate is low (Fig. S8).
The targets in the present experiments were added to the

background, and hence the background is at least partially visible
through the target. Such transparency occurs in natural scenes,
but more common are target objects that occlude the background
under them. There are important differences between detection
with additive and occluding targets, but the basic principles are the
same. For the target-absent trials, the NMT responses will still be
approximately Gaussian, with an SD of 1.0.
Here we only considered detection with background uncertainty

and target amplitude uncertainty; however, the NMT observer is
also appropriate for other forms of target uncertainty, such as
location (25, 26), orientation, and spatial frequency (39) uncer-
tainty. In these cases, the normalized matched template would be
applied over the region of uncertainty, and the decision criterion
is applied to the maximum of the normalized template responses.
These kinds of uncertainty are different from amplitude uncer-
tainty because the template would need to be applied to different
locations or varied in orientation or shape. Also, unlike amplitude
uncertainty, these forms of target uncertainty usually cause a sub-
stantial unavoidable decrease in accuracy (12, 25, 26, 28, 30).

The Optimality of Weber’s Law for Luminance, Contrast, and Similarity.
The classic effects of masking—increases in threshold with back-
ground luminance, contrast, and similarity to the target—were
primarily discovered and then explored using simple backgrounds
that did not randomly vary from trial to trial (4, 5, 8). Further-
more, the effects observed with these nonrandom backgrounds are
similar to those we report here. On the surface, this fact seems
puzzling. An MT observer, for backgrounds that do not vary from
trial to trial, will always perform perfectly, independent of back-
ground luminance, contrast, or similarity, because the template
response has no variability except that due to the target. So, why
should there be a close relationship between the thresholds ob-
tained with random backgrounds and those obtained with fixed
backgrounds?
The explanation most likely lies in the fact that the visual

system evolved to operate under conditions of high stimulus
uncertainty. Under natural conditions, both the background and
the amplitude of the target (if present) are generally different on
every occasion. What the present scene statistics measurements
and modeling show is that the detrimental effects of this un-
certainty can be optimally reduced by dividing the template re-
sponse by the product of background luminance, contrast, and
similarity (Eq. 5 and Figs. S6 and S8); this is just the sort of
normalization (gain control) observed early in the visual system
for the dimensions of luminance and contrast (40–44). Because
the visual system is almost always performing detection under
uncertainty, it is reasonable to expect evolution to place the
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adjustments for this uncertainty into the early, automatic levels
of the visual system. However, the side effect of this is that,
under laboratory conditions, where we can fix the background,
these gain-control mechanisms lead to highly suboptimal per-
formance—the gain control reduces the signal level relative to
subsequent neural processing and decision noise. Undoubtedly,
if our ancestors had existed in a simple environment with just a
few specific backgrounds, then the visual system would have
evolved a very different solution (e.g., estimating which of the
few possible backgrounds is present and then subtracting it from
the input). We argue that the rapid and local neural gain-control
mechanisms, and the psychophysical laws of masking, are most
likely the result of evolving a near-optimal solution to detection
in natural backgrounds under conditions of high uncertainty.
A standard explanation for early gain-control mechanisms is

that they keep the responses of the neurons encoding the stim-
ulus within the neurons’ dynamic range. This explanation must
be true for the slow changes in gain that occur with changes in
ambient light level, for the same reason that cameras adjust their
gain based on ambient light level, namely, the ambient light level
typically varies slowly over 10 orders of magnitude. These
mechanisms are not included in the modeling and analysis pre-
sented here, because the local luminance changes within a given
natural image (and in our experiments) are modest. The gain-
control mechanisms that operate under these conditions adjust
rapidly to the local luminance and contrast (40–44), and perhaps
similarity (32, 45). Indeed, to be useful, they must adjust nearly
instantly (within a few tens of milliseconds), because the eyes are
in constant motion and local image statistics are largely uncor-
related across fixations (42, 46). Our argument is that it is these
rapid gain-control mechanisms that are optimal for detection
when fixating around a given natural scene under conditions of
high uncertainty. This is not to say that there is not also a syn-
ergistic benefit of rapid gain control for keeping signals within
the dynamic range of neurons; for example, Fig. 6 shows that the
dynamic range of template responses within a typical image is
nearly three orders of magnitude.

Constrained Sampling Experiments. Finally, we note that the
constrained-sampling approach described here might prove useful
for uncovering important principles of other natural tasks. The
crucial requirements are to have a large collection of relevant
natural signals and to have hypotheses (or prior evidence) about
what stimulus dimensions are likely to strongly influence task per-
formance. A useful benefit of randomly sampling from the histo-
gram bins without replacement is that, for each bin, the subjects
make responses to a large number of different stimuli that are
controlled simultaneously along the dimensions of interest. This
sampling makes it possible to analyze the stimuli and responses
within a bin to discover other potential factors contributing to
human and model observer performance.

Methods
The scene statistics were computed, and stimuli obtained, from a large
collection of calibrated natural images (4,284 × 2,844 pixels) that are 14 bits
per color and linear in luminance (the images and camera calibration pro-
cedure are available at natural-scenes.cps.utexas.edu). The RGB images were

converted to gray scale by converting to XYZ space and then taking the Y
(luminance) values. They were then clipped to the top 1% and normalized
by the maximum luminance.

To measure the scene statistics, the images were divided into 101 × 101
pixel patches, which was the size of the targets in the experiments, and then
sorted into 3D histograms, with 10 bins along each dimension. Briefly, the
three stimulus dimensions were defined as follows (for more details, see SI
Text). The two target stimuli were a 4-cpd cosine grating and 4-cpd plaid
windowed with a radial raised-cosine function having a width of 101 pixels.
A mean luminance image was obtained by convolving the image with the
raised-cosine window. The mean luminance L of a patch was defined as the
value of the mean luminance image at the center of the patch. A contrast image
was obtained by subtracting the mean luminance image from the image, and
then dividing the result by the mean luminance image. The RMS contrast C of a
patch was defined as the square root of the dot product of the square of the
contrast image with the raised-cosine window centered on the patch. The phase-
invariant similarity Swas defined as the cosine of the angle between the Fourier
amplitude spectrum of the patch (minus its mean) and the Fourier amplitude
spectrum of the target, where the two spectra are regarded as vectors.

To generate the stimuli, each 14-bit natural gray-scale image was nor-
malized to a maximum of 255. On each trial, a background patch was ran-
domly sampled from the bin for that trial. On trials where the surrounding
context region was presented, the context region was included. On target-
present trials, the target was added. The resulting image was then gamma-
compressed, based on the calibration of the display device (GDM-FW900;
Sony), quantized to 256 gray levels from a 10-bit pallet (maximum gray
level = 97 cd/m2), and displayed at a resolution of 120 pixels per degree.

Stimulus presentation and response collectionwereprogrammed inMatLab,
using PsychToolbox (47, 48). In experiments 1 and 2, psychometric functions
were measured for several bins in each experimental session. Each psycho-
metric function was measured twice on each of the three subjects; the second
measurement was taken after all of the psychometric functions had been
measured once. Each psychometric function was measured in a single-interval,
blocked identification task with feedback. There were five blocks, where each
block consisted of 36 trials, with the target amplitude fixed at a particular
value. To help the subject adopt the appropriate decision criterion, the first
trial in a block always contained the target (the first trial was not included in
the data analysis). For each subject, all of the psychometric data for each bin
(350 trials) were fitted with a generalized cumulative Gaussian function using a
maximum-likelihood procedure (see SI Text). Threshold was defined to be the
target amplitude corresponding to 69% correct responses (d′ = 1.0).

For plotting and modeling, the 14-bit gray-scale images were normalized
to a maximum of 1.0, and the target at maximum amplitude was normalized
to a peak of 1.0. Thus, when the target is present, the stimulus image is given
by Iðx, yÞ=Bðx, yÞ+ aTðx, yÞ, with amplitude a< 1, and the template response
is given by R=B · f + a (Eq. 1).

On each trial in experiment 3, one of the nine contrast and similarity bins
was randomly selected, and then a background patch was randomly sampled
from those background patches that were sampled from that bin in experi-
ments 1 and 2. In each 50-trial block, the amplitude of the target was set to
give a particular accuracy, based on the specific subject’s psychometric
functions measured in experiments 1 and 2. There were four different blocks
(65%, 75%, 85%, and 95%). Each block was repeated three times for a total
of 150 trials per accuracy level for each subject.

The experimental protocols for this study were approved by the University
of Texas Institutional Review Board, and informed consent forms were
obtained from all participants.
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SI Text
Fitting Psychometric Functions. The psychometric functions were
fitted with a generalized cumulative normal distribution function.
The equations for hit and false-alarm rates were given by the
following two equations:

PhðaÞ=Φ
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�β

− γ0

#
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− γ0

#
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where a is the amplitude of the target, at is the threshold ampli-
tude, β is the steepness parameter, γ0 is the bias parameter, and
Φð · Þ is the standard normal integral function. To estimate the
parameters, we maximized the likelihood function,

lnLðat, β, γ0Þ

=
Xn

i=1

NhðaiÞlnPhðaiÞ+NmðaiÞln½1−PhðaiÞ�+NfaðaiÞlnPfaðaiÞ

+NcrðaiÞln
�
1−PfaðaiÞ

�
,

[S3]

where NhðaiÞ, NmðaiÞ, NfaðaiÞ, and NcrðaiÞ are number of hits,
misses, false alarms, and correct rejections, respectively, for tar-
get amplitude ai. We found that the bias parameter was nearly
zero in all cases, so it was set to zero in the final estimates of
the thresholds. We note that, although the bias parameter was
zero when estimated from the whole hit and false-alarm psy-
chometric functions, it did vary somewhat with the accuracy,
which was taken into account in analyzing experiment 3 (see
Predictions for Experiment 3). We also note that the value of
the threshold is independent of β, but that β is higher than that
of the matched template observer, 1.0.

Definitions of Dimensions. A local mean luminance image was
obtained for each calibrated natural image by convolving the image
with a 2D raised-cosine function (Hanning window) normalized to
a volume of 1.0,

�Iðx, yÞ=wðx, yÞ p Iðx, yÞ, [S4]

where

wðx, yÞ= W ðx, yÞP
x, y

W ðx, yÞ [S5]
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The radius of the raised cosine ρwas equal to the radius of the patch
(50 pixels). The mean luminance L of a patch was defined as the
value of the local mean luminance image at the center of the patch.
A contrast image was obtained by subtracting the local mean

luminance image from the image and then dividing by the local
mean luminance image,

cðx, yÞ= Iðx, yÞ−�Iðx, yÞ
�Iðx, yÞ . [S7]

The contrast of a patch was defined to be square root of the dot
product of the square of the contrast image and the 2D raised
cosine centered on the patch (see Eq. 1 for the definition of
the dot product),

C=
ffiffiffiffiffiffiffiffiffiffi
w · c2

p
. [S8]

The phase-invariant similarity was defined to be the cosine of the
vector angle between the Fourier amplitude spectrum of the target
ATðu, vÞ and the Fourier amplitude spectrum of the patch AIðu, vÞ,

S=
AT ·AI

kATkkAIk. [S9]

The amplitude spectrum of the target was obtained by taking the
complex absolute value of the fast Fourier transform (FFT) of the
target. The amplitude spectrum of the patch was obtained by tak-
ing the complex absolute value of the FFT of the image patch,
after subtracting the mean of the patch and then windowing
the patch at its boundary by a raised cosine ramp having a width
of 10 pixels.

Individual Subject Data. Fig. S1 shows the individual subject data
for experiment 1, and Fig. S2 shows the individual subject data
for experiment 2.

Kurtosis of Template Response Distributions. Histograms of the
excess kurtosis of the matched template responses for the grating
and plaid target are given in Fig. S3. The excess kurtosis of a
Gaussian distribution is 0.0.

Template Response Variability for Windowed Backgrounds. Fig. S4
shows the MT response SDs for the windowed backgrounds.

Predictions for Experiment 3. In experiment 3, the background bin
and target amplitude randomly varied on each trial, where the
amplitudes were constrained to correspond to a fixed level of
accuracy in experiments 1 and 2. Four fixed levels of accuracy
were tested (65%, 75%, 85%, and 95%) for both target types
(grating and plaid) and for both surround conditions (with and
without). The amplitudes needed for each accuracy level were
estimated separately for each subject.
To analyze the data, we first computed, for each accuracy level,

the average decision bias of the subjects in the blocked conditions
of experiments 1 and 2 and in the random conditions of experiment
3. These bias values were calculated directly from the proportion of
hits and proportion of false alarms using the standard signal de-
tection formula,

γ0 =−
Φ−1ðphitsÞ+Φ−1

�
pfa

�

2
, [S10]

where Φ−1ð · Þ is the inverse of the standard normal integral
function (note that unbiased corresponds a bias value of zero).
These bias values are plotted in Fig. S5. Because of the bias in
the blocked conditions (open squares in Fig. S5), the actual d′
values corresponding to the fixed accuracy levels were slightly
higher than expected given zero bias. For example, the d′ value
for the 75% correct condition was 1.39 rather than the nominal
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1.35. In the signal detection theory framework, d′= ai=
ffiffiffi
η

p
σi,

where ai is the amplitude of the target in bin i, σi is the SD of
the template response in bin i, and η is the subjects’ efficiency.
Thus, the larger d′ value effectively scales all of the target am-
plitudes up by a small factor (this scaling has only a small effect).
We then computed the performance of theMT observer and the

NMT observer, where each was constrained to produce the exactly
the same bias values as the human subjects in the random con-
ditions (black squares in Fig. S5). The proportion of hits and false
alarms of the MT observer are given by the following equations:

ph = 1−
1
n

Xn
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σi
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[S11]
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�
−
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σi
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where n is the number of background bins (nine, in the present
case). For each accuracy condition, we varied the criterion γ in
Eq. S11 and S12 until the bias γ0 computed with Eq. S10 matched
the human subjects. These criterion values determined the predic-
tions of the MT observer shown in Fig. 7 A and B. Similarly, for
each accuracy level, the criterion value of the NMT observer was
varied to match the bias value of the human subjects.

Estimation of Local Background Properties. The performance of the
NMT observer depends on how accurately the properties of the
background in the target region can be estimated; this is a po-
tentially tricky problem because, on each trial, the observer does
not know whether the target is present or absent. If the target is
present, it could bias the estimate of the background properties,
thereby leading to a reduction in performance. Interestingly, we
discovered that a simple linearmodel is able to estimate the natural
background properties with sufficient accuracy that performance is
essentially unaffected by the random presence of the targets with
different amplitudes. We considered two linear models. The first
model takes into account the surrounding background context
region and is only appropriate for experiment 1. The second model
only considers the background in the target region and can be
applied to either experiment 1 or experiment 2. In both cases, we
learn a separate linear model for each background property. We
trained the model by randomly sampling a large number of
backgrounds from the entire space, and, for half the samples, we
added a target with contrast randomly sampled from a uniform
probability distribution over a large range (0.01 to 0.35).
In the first model, we measured, for each training stimulus, the

value of the stimulus property at the target location and at the
eight surrounding locations. We also measured the template
response in the target region. This gave a vector of 10 numbers for
each training stimulus. We then applied linear regression to learn
the 10 weights that best predict the ground truth background
property value at the target location. Fig. S7 shows the learned
weights for each of the three dimensions. As can be seen, the most
weight is put on the center (target) location, and the next most is
put on the template response. The negative weight on the tem-
plate response partially discounts stimulus energy that is aligned in
phase with the target, and hence is likely to come from the target.
In the second model, we measured the value of the stimulus

property at the target location, and we measured the template
response. Thus, there were only two weights to learn. As might be
expected given the weights in Fig. S7, the estimates of the back-
ground properties were of similar accuracy in the two models. Thus,
in practice, all information away from the target location can be
ignored. For each trial in experiment 3, we used these fixed linear
weights to estimate the background luminance, contrast, and simi-
larity in the target region, and then substituted those estimated

values into Eq. 5 to obtain the normalized response for that trial.
Finally, we applied a single, fixed decision criterion (for each
percent-correct condition) to obtain the predicted black points and
solid curves in Fig. 7 A and B.

Robustness of NMT Observer.The NMT observer is able to account
for almost all of the data reported here with a single efficiency pa-
rameter whose effect is to scale all of the NMT observer’s thresholds
up by a fixed factor. An important question is, how sensitive are the
predictions to the specific assumptions of the NMT observer?
As mentioned in Discussion, there is evidence from classifi-

cation image experiments that humans use image features that
deviate from those used by the MT (and NMT) observer (33–35).
For detection in white-noise backgrounds, removing features from
the optimal matched template simply reduces the overall efficiency
without changing the shape of the predicted threshold functions.
We ran a few checks of this principle for our natural image back-
grounds and found that it appears to hold quite well: The corre-
lation between the predicted thresholds for the MT observer and
one with 70% of the template pixels randomly removed was 0.97,
and the correlation with a template that was windowed to about half
the area was 0.94. Thus, it seems likely that the predictions of the
MT and NMT observer are fairly robust to deviations from the
matched template. In other words, there are likely to be a number
of models that predict the pattern of results in experiments 1 and
2. This finding strongly suggests that this pattern of results is
largely due to the statistical properties of natural backgrounds
and not the detailed properties of the detection mechanisms.
Another property of the NMT observer is that the normali-

zation involves all three stimulus dimensions: luminance, con-
trast, and similarity. Fig. S6 shows, for all background bins in Fig.
2B, the effect of normalizing separately by all three dimensions,
by only luminance and contrast, by each dimension separately,
and by no dimensions (the MT observer). For these calculations,
we assumed a flat prior (all bins equally likely, as in experiment
3) and that the criterion was placed at the optimal location. As
can be seen, all three dimensions provide a benefit, although
contrast normalization is the most important.
The no-normalization predictions in Fig. S6 are those of the

MT observer with an optimally placed criterion. A more so-
phisticated model observer that does not use normalization (i.e.,
does not use estimates of L, C, and S) is a Bayesian observer with
knowledge of the SDs for each bin and of the prior over bins. In
this case, the observer computes the probability of the observed
template response given each possible SD and then integrates
(marginalizes) across SD and amplitude (49). Given the flat
prior, the decision variable reduces to

X =

Pn

i=1
pT+BðRjσi, aiÞ

Pn

i=1
pBðRjσi, aiÞ

, [S13]

where pT+BðRjσi, aiÞ is the probability of the template response
given a particular bin SD and target amplitude when the target is
present, and pBðRjσi, aiÞ is the probability with background alone.
This observer responds that the target is present if this decision
variable is greater than 1.0. We simulated this observer and found
its performance to be indistinguishable from that of the MT ob-
server (gray curve) shown in Fig. S6. Thus, a standard Bayesian
observer without normalization is also inconsistent with the results
of experiment 3.
Under natural conditions, both the properties of the background

and the amplitude of the target (if present) would be unknown and
largely independent from one occasion to the next. Further, the
prior probability of a target being present would generally be low.
Under such circumstances, a simple and sensible decision rule is to
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pick a criterion γ that produces a small desired false-alarm rate
(like a one-tailed statistical test). For the MT observer, the false-
alarm and hit probabilities are given by
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where Φ is the standard normal integral function. For the NMT
observer, the false-alarm and hit probabilities are given by

pfa =ΦðγÞ [S16]
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Fig. S8 shows proportion of hits as a function of target amplitude
for several false-alarm rates, again assuming a flat prior over
bins. The blue curves show the proportion of hits for the MT
observer, and the orange curves show the proportion of hits for
the NMT observer. As can be seen, the NMT observer has a
much greater hit rate (i.e., much greater power) than the MT
observer, especially when the desired false-alarm rate is low
(which is appropriate under real-world conditions where the
prior probability of target present is low). These calculations
further demonstrate the potential value of normalization by local
luminance, contrast, and similarity.
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Fig. S1. Individual threshold functions from experiment 1. Colored symbols are thresholds for the different subjects; black symbols are the average. The lines
are best-fitting linear functions to the average threshold curves.
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are best-fitting linear functions to the average threshold curves.
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Fig. S3. Histograms of the excess kurtosis of the template response distributions for the grating and plaid targets, for all bins in Fig. 2B. The excess kurtosis is
0.0 for a Gaussian distribution. The mean excess kurtosis for the grating target is −0.0095 and, for the plaid target, is 0.0724.
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Fig. S4. Template response variability in windowed natural images for the grating and plaid targets. Each symbol shows the SD of the template response
(Eq. 1) for one of the 1,000 bins tiling the space of natural background image patches (Fig. 2C). The position of a symbol on the horizontal axis gives the mean
similarity of the backgrounds in the bin to the target (units are proportion of the maximum possible similarity). The color of a symbol gives the mean RMS
contrast of the backgrounds in the bin. The panel gives the mean luminance of the backgrounds in the bin (units are proportion of maximum luminance in the
entire natural image). The solid curves show the predictions of Eq. 3, with the following parameter values: k0 = 0.885, kL = 0, kC =−0.0139, and kS =−0.0397.
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Fig. S6. Contributions of luminance, contrast, and similarity normalization under random background and target amplitude conditions. The gray curve shows
the performance of the MT observer, for the space of natural background bins in Fig. 2B, with a decision criterion placed optimally for each level of accuracy
(here converted to d′). The black curve shows the performance of the NMT observer for normalization by all three dimensions (Eq. 5). The red, blue, and green
curves show the performance of the NMT observer for normalization by luminance, contrast, and similarity alone. The purple curve shows the performance for
normalization by luminance and contrast (no similarity normalization).
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Fig. S7. Linear weights for estimating background luminance, contrast, and similarity in the target region, for the grating target. Linear regression was
applied separately for each dimension to learn 10 weights. Nine of the weights were for the dimension value (e.g., similarity) at the target location and eight
surrounding locations. The tenth weight was for the template response in the target region. Almost all of the weight is put on information at the location of
the target (central location). The same weights were obtained for the plaid target. Using just the two weights for the target location is sufficient to achieve
essentially optimal performance under conditions of simultaneous background uncertainty and target amplitude uncertainty.

Sebastian et al. www.pnas.org/cgi/content/short/1619487114 6 of 7

www.pnas.org/cgi/content/short/1619487114


Fig. S8. Comparison of proportion of hits (statistical power) of the MT and NMT observer for a fixed proportion of false alarms (type I error rate), as a function
of target amplitude, for several false-alarm rates. The statistical power of the NMT observer is much greater than that of the MT observer, especially when the
desired proportion of false alarms is low, which is appropriate under natural conditions where the probability of target present is low.
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