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A method for denoising digital camera images is described.  The method is based on directly measuring the 
local statistical structure of natural images in a large training set that has been corrupted with noise 
mimicking digital camera noise.  The measured statistics are conditional means of the ground truth pixel value 
given a local context of input pixels.  Each conditional mean is the Bayes optimal (minimum mean squared 
error) estimate given the specific local context.  The conditional means are measured and applied recursively 
(e.g., the second conditional mean is measured after denoising with the first conditional mean).  Each local 
context vector consists of only three variables, and hence the conditional means can be measured directly 
without prior assumptions about the underlying probability distributions, and they can be stored in fixed 
lookup tables.  Performance accuracy matches state-of-the-art algorithms on additive white Gaussian noise 
(AWGN) and multiplicative white Gaussian noise (MWGN).  Performance accuracy exceeds state-of-the-art 
algorithms on realistic camera noise, which is multiplicative and correlated (MCGN).  Performance speed 
greatly exceeds state-of-the-art algorithms because the estimates are obtained by applying only a few fixed 
tables, each indexed by only a few pixel values. 

 

I. INTRODUCTION 

Photon and sensor noise limit the performance of all imaging systems. Minimizing the effects of this noise is a 
universal and fundamental image processing task.  Here we address the problem of denoising in still digital camera 
images, using a new approach that combines measurements of natural image statistics with measurements of the 
noise characteristics of digital cameras. 
 
In general, a noisy image can be represented as an unknown “true” image that has been corrupted by noise.  Let (x) 
represent the value of a pixel at location x = (x, y) in the true image.  Without loss of generality, the observed value is 
given by z(x) = (x) + n(x, ), where n(x, ) is the noise, which may be spatially correlated and/or dependent on the 
true image values . 
 
The goal of denoising is to estimate (x) given the observed context of pixel values c(x) at and around the pixel 
location. The optimal estimate is given by the standard formula from Bayesian statistical decision theory: 
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where ߛሾ߱ሺxሻ, ෝ߱ሺxሻሿ is the cost function, and ݌ሾ߱ሺxሻ|cሺxሻሿ is the posterior probability of the true value given the 
observed context. 
 
A vast number of different denoising methods have been proposed over the past several decades (for recent 
summaries see [1, 2]). They can all be viewed as providing some form of sub-optimal approximation to the Bayes 
optimal estimate given by equation (1). 
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Most often, the explicit (or implicit) cost function is the squared error between the estimated and true pixel values: 

        2
ˆ ˆ,           x x x x . This cost function finds the estimate with the minimum mean squared error 

(MMSE) or equivalently the estimate with the maximum peak signal-to-noise ratio (PSNR).  Other cost functions, 
such as those that are based on perceptual properties of the human visual system [3], are worthy of consideration; 
however, as is common in the denoising literature, we will focus here on the squared-error cost function. For this cost 
function, equation (1) becomes: 
 

      ˆopt E    x x c x    (2) 

 
In other words, the Bayes optimal estimate is simply the expected value of the true pixel value given the observed 
context [e.g., 4]. 
 
To develop an optimal denoising method for a specific application, one must characterize both the signal (the 
statistical structure of true images) and the noise (the statistical structure of the noise). The various denoising 
methods can be distinguished based on assumptions they make about the structure of the signal and noise. Also 
important is the computational efficiency (speed and complexity).  For a given application, the best method will be 
the one that jointly maximizes the approximation to equation (2) and the computational efficiency. 
 
The earliest principled denoising method is the Wiener filter [5], which is an exact implementation of equation (2), 
under the assumption that both the signal and the noise are described by stationary (not necessarily white) Gaussian 
processes.    However, images are generally non-stationary and hence this method does not produce good results for 
most images (it blurs edges and texture).  Subsequently, there have been many attempts to weaken the assumption of 
global stationarity.  Adaptive Wiener filtering methods assume Gaussian noise and signal that is locally stationary; 
the methods estimate the Gaussian parameters at each pixel location and then apply the Wiener filter with those 
parameters [e.g., 6].  A closely related approach combines image segmentation and Bayesian MAP estimation [7]. 
The critical component of these methods is estimating the local Gaussian parameters; the less noisy the estimated 
parameters the more accurate the denoising. Simple non-iterative methods for estimating the parameters that use only 
pixels in the immediate neighborhood of the pixel being denoised can be computationally efficient. 
 
Other recent methods do not make explicit formal assumptions about the structure of the noise or signal, but instead 
exploit heuristic intuitions to average out the noise and leave the signal. One simple and effective method of this type 
is bilateral filtering [8] which takes the weighted average of pixels in the local neighborhood, where the weights 
depend jointly on the spatial and gray-level (color) distance of the neighboring pixel from the pixel being denoised. 
The intuition is that spatially nearby pixels are positively correlated in gray level and can be averaged, but spatially 
nearby pixels that differ substantially in gray level usually contain strong signals (true image features) and should not 
be averaged. This method can be computationally efficient. 
 
Related methods are those based on non-local averaging [9].  For example, the NL-Means algorithm [1] searches for 
pixels whose local neighborhood in the image is similar to the neighborhood of the pixel being denoised. It then 
averages all these pixels to obtain the estimate. The more similar is the local neighborhood the greater is the weight 
given to the pixel when computing the average. The intuition is that natural images are statistically regular and hence 
if two image patches are similar in structure it is likely that the center pixels are similar and hence can be averaged to 
estimate the true image value.  To the extent that this assumption is valid for the kind of noise in an imaging system 
and for the kinds of images being captured, such averaging could provide a good approximation to the right side of 
equation (2). Indeed, methods based on non-local averaging provide good results and are currently popular. However, 
these methods are less computationally efficient because of the need to make the neighborhood similarity 
measurements. 
 
Another class of methods involves hard or soft thresholding following a linear transform, such as a wavelet or 
discrete cosine transform [10, 11].  The intuition is that for appropriately chosen kernel shapes, the regular structure 
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of natural images results in a very sparse representation (a few large kernel coefficients, with most near zero), 
whereas the much more random structure of noise results in a less sparse representation (many coefficients with 
modest values). Thus, thresholding out the smaller coefficients selectively removes the noise. These methods can be 
computationally efficient, but can be prone to producing ringing artifacts. 
 
Currently the best performing denoising methods are hybrid methods [12,13].  For example the BM3D method 
combines non-local averaging, cooperative linear transform thresholding, and Wiener filtering [12]. 
 
In summary, most of the existing methods either assume Gaussian image and noise models, or principled heuristics 
based on qualitative properties of natural images. Further, the parameters of most denoising methods are estimated 
from the image being denoised. 
 
Here, we propose a method, Recursive Conditional Means (RCM) denoising, that makes almost no assumptions 
about the underlying probability distributions, and that learns its estimates from the statistics of a large database of 
natural images. The fundamental idea is to directly measure the conditional means on the right side of equation (2) 
recursively for a number of different small neighborhoods (context regions). During denoising, each of these 
different neighborhoods provides an improved estimate of the denoised image pixel. In previous work we have found 
that for the task of upsampling (super resolution), this approach is every effective and computationally efficient [14]. 
 
Conceptually, our approach is similar to non-local methods in that an estimate is based on the average across a large 
number of similar neighborhoods. The difference is that RCM neighborhoods are small enough that similar 
neighborhoods are identical, and hence there is no need for an arbitrary definition of similarity. Also, the 
neighborhoods are small enough that the conditional means can be learned precisely from a large set of natural 
images and then stored in tables.  Thus, unlike the non-local methods there are never “unique patches” for which a 
large estimation error is made. We find that RCM denoising is competitive with the best performing denoising 
methods, and that it is extremely fast computationally because all the relevant statistics are stored in fixed tables that 
can then be applied to any image. 
 
An important general consideration is that denoising methods are almost always tested by adding constant-variance 
white Gaussian noise (AWGN) to gamma-compressed ground truth images. However, the noise in most digital 
cameras is more complex. The noise in the raw image from a CCD or CMOS sensor array is generally statistically 
independent and multiplicative: the variance of the noise is proportional to the mean intensity falling on the pixel.  
This noise occurs prior to gamma compression, and thus differs from additive noise following gamma compression. 
(Note, however, that additive noise following gamma compression is similar to multiplicative noise prior to gamma 
compression, explaining in part the popularity of AWGN.)  Further, the digital camera noise becomes spatially 
correlated after the standard image processing in the camera’s hardware or firmware, which typically involves color 
interpolation (demosaicing) and conversion to a standard display format such as sRGB. Thus, even a “lossless” tiff or 
png camera image contains spatially correlated noise. It is quite possible that methods that work well for AWGN will 
perform more poorly on noisy digital camera images.  Therefore, both for training and testing denoising methods it is 
critical to consider the actual noise in digital cameras [7,15]. 
 
In what follows we first measure and characterize the noise in a high quality digital camera. This camera noise model 
is then used to simulate the effects of the camera’s noise by adding model noise to a large set of ground-truth images 
to obtain training and test images.  Next, we describe the details of RCM denoising.   Finally, we compare RCM 
denoising with other methods, both in terms of mean squared error (MSE/PSNR) and subjective appearance. 

II. DIGITAL CAMERA NOISE 

A. Noise measurements 

Noise was measured in a Nikon D700 camera.  Images were captured of a fixed uniform light field created from a 
tungsten light source.  The shutter speed was set at 1/60 sec.  The camera’s aperture was adjusted in small increments 
so that images varied from completely black fields to maximally white fields.  Measurements were repeated for a 
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range of ISO settings: 200, 400, 640, 800, 1000, 1600, and 3200.  Note that ISO represents the gain applied to 
CCD/CMOS elements, and thus the greater the ISO, the noisier the images.  Higher ISO values are typically needed 
for low light levels or for stop-action (fast shutter speeds). 
 

 
Fig. 1.  Noise model fit for 14-bit flat-field red pixel image with mean value of 89.5.  A Gaussian noise model does not fit well when the image 
pixel values are low because of the higher kurtosis of the image’s noise distribution.  A mixture of a Gaussian and Laplace distribution provides 
a better fit. 

Statistical analysis was carried out separately for the R, G and B pixel locations in the 14-bit raw images. In order to 
control for the effect of vignetting, only the center 128x128 patch of pixels from each image was analyzed. Figure 1 
shows the distribution of R pixel values for one ISO and aperture setting.  The distributions often differ slightly from 
Gaussian and are better described by a mixture of a Gaussian and a Laplace distribution (black curve in Figure 1): 
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where ߪே and ߪ௅ are the standard deviations of the Gaussian and Laplace distributions, and 0 ൑ ߙ ൑ 1.  Each 
measured distribution was fitted with this mixture function.  Figure 2 plots the fitted variance parameters as a 
function of the mean pixel value, for R, G and B pixels, at ISO3200.  As can be seen, the variances increase 
approximately linearly. We used the best fitting linear functions to summarize the camera noise for each ISO setting.  
The camera noise increases with the ISO setting, and thus the plots in Figure 2 show the highest noise levels we 
measured.   
 
As a check, the measurements were repeated with a shutter speed of 1/250 s (and larger apertures).  As expected, the 
noise parameters were independent of the shutter speed. 
 
 

 
Fig. 2. Measured variances of Gaussian and Laplace distributions from flat field images.  The measurements were summarized with linear 
equations. 
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B. Noise simulation 

The lowest standard ISO setting (low noise) available in the D700 camera is ISO200; thus, we took natural images 
captured with this ISO to be ground truth images. Training and test images for higher ISO settings were then created 
by adding simulated camera noise.  In particular, for any value z  in the ground truth image we added a random value 
∆ܼ by sampling from the density function in equation (3) with the standard deviations for the Gaussian and Laplace 
density functions given by  
 

 2 2
200( ) ( ; ) ( ; )N N N T Nz z ISO z ISO         (4)    

 
and, 
 

 2 2
200( ) ( ; ) ( ; )L L L T Lz z ISO z ISO         (5) 

  
The value of α was determined by averaging the value of α for all fits across all channels.  The average value of α 
was 0.975, and the standard deviation of α was 0.027. 
 
The variance of the simulated noise increases in proportion to the mean value and hence is “multiplicative” noise.  
Further, the simulated noise is generated independently for each pixel location.  Because the noise is approximately 
Gaussian we will refer to the simulated noise in raw images as multiplicative white Gaussian noise (MWGN). 
 
The above steps simulate the noise in raw images, but most applications involve denoising images that have been 
interpolated (demosaiced), converted to a standard color format (usually linear sRGB), gamma compressed, and 
finally quantized to 8-bits per color channel (24-bit sRGB).  We can simulate these cases simply be processing the 
raw ground truth and the simulated raw test/training images through the standard processing steps [7].  For example, 
Figure 3a shows a cropped region from an ISO200 raw image, after conversion to standard 24-bit sRGB.  Figure 3b 
shows a cropped image of the same scene taken at ISO3200.  Figure 3c shows the result of adding simulated noise to 
the ISO200 raw image.  
 

 
Fig. 3.  Synthesized noise.  (a) Cropped region of an image taken with camera ISO200.  (b) The same image taken with ISO3200.  (c) The region 
in a with noise added to create a synthesized ISO3200 image. 

The noise in the real and simulated sRGB images is clearly spatially correlated.  We will call this multiplicative 
correlated Gaussian noise (MCGN). Figure 4 compares the synthesized noise in a sRGB camera image with that of 
standard additive white Gaussian noise (AWGN) of similar noise power.  Note that the white noise was (as is 
standard) added after gamma compression.  The RCM method of denoising can be applied to any kind of noise.  The 
emphasis here is on denoising sRGB images (MCGN), but we also consider multiplicative and additive white 
Gaussian noise (MWGN and AWGN). 

III. RCM DENOISING 

A. Recursive conditional means and variances 

As mentioned earlier, the key concept of RCM denoising is to measure conditional means for different local contexts.  
The conditional mean for each context provides the Bayes optimal (MMSE) estimate given that context.  The number 
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of variables constituting each local context is chosen to be small so that the conditional means can be measured 
accurately from training images without making assumptions about the underlying probability distributions. By 
measuring and applying the conditional means recursively the effective size of the context is expanded. 
 

 
Fig. 4.  Synthesized ISO noise versus traditional AWGN (additive white Gaussian noise). (a) Detail of original image. (b) Same detail with 
synthesized AWGN, MSE across entire image=55.8. (c) Same detail with synthesized MCGN (ISO3200), MSE across entire image=56.3. 

To be more precise, let z(x) represent the input image value at location x, let ci(x) be the context vector used to obtain 
the ith recursively estimated image value ෝ߱௜(x), and let (x) represent the ground truth image value.  Thus, the Bayes 
optimal estimate of (x) on iteration i is given by 
 

     ˆi iE    x x c x                      (6) 

 
where the context vector on iteration i is obtained from image ૑ෝ௜ିଵ. The number of iterations n is set based on when 
the estimation accuracy reaches asymptote. 
 
For symmetry, we typically also estimate images with all the context vectors rotated by 90 deg.  This slows the 
computation speed, but does not require estimating additional tables.  This second set of estimated image values can 
be written as 
 

     ˆ i iE     x x c x                         (7) 

 
The last estimated image values,	 ෝ߱௡ሺxሻ and ෝ߱௡┴ሺxሻ, can be combined using their reliabilities: 
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where the mean of the prior is ݑ ൌ ሻܠ௡ሺߩ ሻሿ, and reliabilities areܠሾ߱ሺܧ ൌ ሻܠ௡ୄሺߩ ,ሻሿܠ௡ሺ܋|ሻܠሾ߱ሺݎܸܽ/1 ൌ
ߩ ሻሿ, andܠሻ|ܿ௡ୄሺܠሾ߱ሺݎܸܽ/1 ൌ  ሻሿ (see Appendix A).  Note that if the reliabilities of the two estimates areܠሾ߱ሺݎܸܽ/1
approximately equal and are much larger than ߩ, then equation (8) reduces to the simple average: 
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As it turned out, for the context vectors used here, we found that the reliabilities are approximately equal and much 
larger than ߩ; thus, all the results reported here are for equation (9).   
 
To apply this estimation method, one must specify the conditional means, and if it is necessary to combine estimates 
with equation (8) rather than equation (9), then one must also specify the conditional variances.  The approach taken 
here is to directly measure the conditional means and variances from a large set of training images.  Let {, … ,} 
be a set of k ground truth images indexed by j, and let {z1, … , zk} be the corresponding training images.  The sample 
conditional mean for a specific context vector ci is given by  
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where Ωሺc௜ሻ is the set of locations in the training images with context ci, and N(ci) is the total number of locations in 
the set.  Similarly, the sample variance (if needed) is given by 
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The values of mi [ci] and vi [ci] can be stored as tables (which we do here), or potentially summarized with descriptive 
functions.  If the set of training images is sufficiently large, then ܧሾ߱ሺܠሻ|܋௜ሺܠሻሿ ≅ ݉௜ሾ܋௜ሺܠሻሿ, and 
ሻሿܠ௜ሺ܋|ሻܠሾ߱ሺݎܸܽ ≅  ,ሻሿ.  In practice, we have found that the tables are the same for the rotated context vectorsܠ௜ሺ܋௜ሾݒ
and hence the same tables can be used for both orientations. 

B. Ground truth, training and test images 

The ground truth, training, and test images were obtained from a database of 1204 high resolution (4284 x 2844) 14-
bit raw images captured with a calibrated Nikon D700 digital camera, at its lowest standard ISO setting (ISO200).  
Care was taken to minimize clipping.  From the 1204 images, 803 were randomly selected to be training images, and 
the remaining 401 were used as test images.   The 803 training images provided approximately 1010 samples for 
learning each table of conditional means. 
 
We considered three kinds of training and test images.  For the first kind (MCGN) we performed the following 
sequence of steps:  (1) addition of simulated camera noise to ground truth raw images, (2) AHD interpolation 
(demosaicing), (3) conversion to linear sRGB, (4) gamma compression, (5) quantization to 24-bit (8 bits per channel) 
sRGB. 
 
For the second kind (MWGN) the steps were:  (1) AHD interpolation, (2) conversion to linear sRGB, (3) addition of 
MWGN, (4) gamma compression, (5) quantization to 24-bit sRGB. 
 
For the third kind (AWGN) the steps were:  (1) AHD interpolation, (2) conversion to linear sRGB, (3) gamma 
compression, (4) quantization to 24-bit sRGB, (5) addition of AWGN.  The average noise power (mean squared error 
from the ground truth images) for the second and third kinds of images was set to match that of the first kind. 
 
For more details about the natural images see [14] and www.cps.utexas.edu/natural_scenes, where all the ground 
truth images are available. 

C. Context vectors 

Once the ground truth and training images have been specified, the only remaining steps are to specify the context 
vectors and measure the tables.  In RCM denoising, all context vectors consist of three 8-bit variables. 
 
For gray scale images there are five context vectors: 
 

       1 1, , , , 1,z x y z x y z x y     c x   

       2 1 1 1ˆ ˆ ˆ, 1 , , , , 1x y x y x y       c x
 

       3 2 2 2ˆ ˆ ˆ1, , , , 1,x y x y x y       c x               (12) 

       4 3 3 3ˆ ˆ ˆ, 1 , , , , 1x y x y x y       c x  

       5 4 4 4ˆ , ,a    c x x x x  
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The first four contexts consist of the pixel location being estimated and two immediately neighboring pixel locations. 
The contexts alternate between the horizontal and vertical directions. As a result of applying tables for these contexts 
recursively, there are effectively 9 pixels in z (the 3x3 neighborhood) that contribute to each estimated pixel in 	૑ෝଶ, 
and 25 pixels (the 5x5 neighborhood) contributing to each estimated pixel in 	૑ෝସ (see Fig. 5).  Tables for these first 
four context vectors can be applied very efficiently—they are effectively 1x3 kernels that can be applied successively 
to the image, in place, with minimal buffering. 
 
The final context vector consists of the pixel location being estimated, the average ܽସሺxሻ of the values in the 
surrounding 9x9 neighborhood of pixel locations (80 locations), and the standard deviation ߪସሺxሻ of the surrounding 
80 pixel values from the regression plane (see Appendix B). The rationale for this last context vector is that if the 
ground truth image is locally planar at some location, then the MMSE estimate is the average of the values in the 
neighborhood.  The standard deviation from the regression plane measures how close the neighborhood is to being 
planar, allowing the table to know when to put the most weight on the local average. 
 

 
Fig. 5. Denoising kernels. The input image is z, and the recursively estimated images are ૑ෝଵ to ૑ෝହ. (a)-(d) The red pixels show the explicit 
context vector used from that image to obtain the next image.  The yellow pixels show the additional pixels effectively contributing to the 
estimate.  (e) The context for estimating ૑ෝହ consists of the center (red) pixel, the average of the surrounding (yellow) pixels, a4, and the 
standard deviation of those pixels from the regression plane, 4ߪ. 

For color images, the algorithm first converts the images from RGB to a perceptual color space (e.g., Rec 709 
YCbCr, or a simple opponent color space [12]), applies the tables, and then converts back to RGB.  Converting to a 
perceptual color space significantly reduces visible color artifacts in the denoised images.  Perceptual color spaces 
represent each pixel with a luminance value (e.g., Y) and two color-opponent values (e.g., Cb, Cr). Using the same 
context vectors described above, we learn one set of tables for the luminance values and another set for the color-
opponent values (the same tables are used for both color-opponent values). For the color-opponent channels, the fifth 
context vector uses an 11x11 neighborhood rather than 9x9. For color images, the algorithm also uses a final context 
vector consisting of the estimated RGB values in ෝ߱ହ(x): 
  

       6 5 5 5
ˆˆ ˆ, ,R G B   c x x x x                 (13) 

IV. RESULTS 

A. Estimation tables 

RCM denoising uses local contexts having only three elements.  This makes it possible to visualize the statistical 
rules implicit in the MMSE estimates.  For example, Fig. 6a-c shows the optimal estimates for context c1 (see Fig. 
5a). In each plot, the horizontal and vertical axes give the values of the two context pixels surrounding the center 
context pixel (the location being denoised).  The color scale gives the MMSE estimate of the gray level of the center 
pixel (i.e., the directly measured conditional mean).  The upper plot is for when the value of center context pixel is 
64, the middle plot when the value is 128, and the bottom plot when the value is 192.  In general, the MMSE 
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estimates are smooth but non-trivial functions of the context vector.  When the surrounding context pixels are nearly 
equal (i.e., near the main diagonal) and are lower in value than the center context pixel, then the estimate is strongly 
reduced.  Similarly when the surrounding context pixels are nearly equal and greater than the center context pixel, 
then the estimate is strongly increased.  On the other hand, when the two surrounding pixels differ there is greater 
likelihood of structure in the ground truth image and hence more weight is put on the center context pixel.  The tables 
for contexts c2 to c4 are qualitatively similar to that for c1, but differ in detail. 

 
Fig. 6. Estimation tables for RCM denoising.  Horizontal and vertical axes give the two context variables that are not the center context pixel.  
The color axis gives the MMSE estimate. (a-c) Tables for context c1 when the center context pixel z(x,y) has a value of (a) 64, (b) 128, and (c) 
192.  (d-f) Tables for context c5 when center context pixel ෝ߱ସሺݔ,  .ሻ has a value of (d) 64, (e) 128, and (f) 192ݕ

Fig. 6d-f shows the optimal estimates for context c5 (see Fig. 5e).  In each plot, the vertical axis gives the average gray level of 
the context pixels surrounding the center pixel (the pixel location being estimated), and the horizontal axis gives the standard 
deviation of the context pixel values from the regression plane.  Again, the upper, middle and lower plots are for when the value 
of center context pixel is 64, 128 and 192, respectively.  When the standard deviation is low, the region is closer to planar and 
more weight is put on the average (the estimates change more as the average changes; note the bigger changes in color), whereas 
when the standard deviation is high the region is less planar and more weight is put on the center context pixel (the estimated 
value from the previous contexts). 
 

B. Quantitative performance 

To assess the performance of RCM denoising, we compared it with two standard algorithms, adaptive Wiener filtering (AWF; 
using the MATLAB® R2102a wiener2 function) and ImageMagick® adaptive blur (IMAB; www.imagemagick.org, version 
6.7), and with a state-of-the-art algorithm (C-BM3D [12]).  Three different kinds of noise were tested: multiplicative correlated 
Gaussian noise (MCGN; i.e., realistic camera-image noise), multiplicative white Gaussian noise (MWGN; i.e., realistic raw-
camera-image noise), and additive white Gaussian noise (AWGN).  MCGN was added to each image by interpolating between 
the variance parameters for each measured ISO value between 200 and 3200 in order to achieve a noise level that corresponded 
to 15  (see Fig. 2).   The MWGN and AWGN were also set to have this same average noise level.  The value of the noise 
standard deviation given to the three comparison algorithms was also 15. 
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Fig. 7. Quantitative performance of denoising algorithms on 401 RGB test images.  The vertical axis gives the average MSE of the denoised 
image.  The horizontal axis indicates the successively denoised images produced by the proposed RCM algorithm. The black circles show the 
MSE of the successively denoised images by the RCM algorithm.  The colored horizontal lines show the final MSE of the comparison 
algorithms.  Also shown are the average final values of PSNR.  (a) Results for realistic camera-image noise (MCGN).  (b) Results for realistic 
raw-camera-image noise (MWGN). (c) Results for additive white Gaussian noise (AWGN). 

Performance was compared on the 401 test RGB images and on several standard RGB images in the image 
processing literature.  The black circles in Fig. 7 show the average MSE for the 401 test images after each step of 
RCM denoising.  Recall that the result of applying the table for each context is a partially denoised image (indicated 
on the horizontal axis).  The horizontal lines show the average MSE of the comparison algorithms.  Also shown in 
the figure is the average PSNR of the final estimates. 
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Fig. 8. Computation time of denoising algorithms. 
 
Fig. 7a shows the results for noise that realistically mimics the noise in camera images (MCGN).  The MSE drops 
rapidly as the successive tables are applied, dropping down to that of the AWF and IMAB algorithms after 1 step and 
below that of C-BM3D after 2 steps.  Fig. 7b shows the results for noise that realistically mimics the noise in raw 
camera images (MWGN).  Again, the MSE drops rapidly as the successive tables are applied, dropping below that of 
AWF and IMAB after 2 steps and below that of C-BM3D after 5 steps.  Finally, Fig. 7c shows the results for additive 
white noise (AWGN).  The MSE drops below AWF and IMAB at 2 steps and approaches but does not drop below C-
BM3D.  Denoising is generally easier with statistically independent noise and hence the final MSE is lower for 
MWGN and AWGN. 
 
The black circles in Fig. 8 show the cumulative computation time in milliseconds per megapixel, at each successive 
step of the RCM algorithm.  The final black circle and the horizontal lines show the total computation time of the 
algorithms.  The algorithms were run on a single 3.1GHz Intel processor.  Not surprisingly, given its simplicity and 
its use of tables, the RCM algorithm runs very quickly.  The slowest step is application of the table for context c5 (see 
Fig. 5e).  The next slowest step is repeating the first four steps with the orthogonal context vectors to obtain  4̂

 x .  

Interestingly, this step provides symmetry (which is good to have), but has a relatively minor effect on MSE (see Fig. 
7).  Thus under demanding conditions it could be dropped. 
 

C. Qualitative performance 

Many of the standard test images in the image processing literature already contain substantial camera noise and thus 
one way to compare denoising algorithms is simply to denoise the original image.  For example, Fig. 9 shows a 
cropped region of the original standard peppers image together with the results of the AWF, C-BM3D and RCM 
algorithms.  Qualitatively the quality of C-BM3D and RCM are similar with a little less chromatic aliasing for the 
RCM algorithm. 
 
Fig. 10 shows results for synthesized camera noise (MCGN).  The upper image is cropped from one of the test 
images in our data set. The bottom image is of a human-made object and not in our data set.  The values of PSNR are 
for the entire image.  As can be seen RCM denoising removes much more of correlated spatio-chromatic noise. 
Fig. 11 shows results for a larger portion of a natural image.  In this example, the noise was increased to a higher 
value ሺߪ ൌ 25ሻ to increase the visibility of the noise.  For more examples, see  www.cps.utexas.edu/natural_scenes. 
 
Fig. 12 shows results for noise that mimics adding independent multiplicative noise prior to gamma compression 
(MWGN).  Recall that this noise is like the noise in raw camera images and is quite similar to additive independent 
noise following gamma compression (AWGN).  The upper image is cropped from one of the test images in our data 
set.  The middle image contains human made objects and is not in our data set.  The bottom image is cropped from 
the standard Lena image.  Again the PSNR values are for the whole image.  In general the C-BM3D and RCM results 
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are similar in quality.  C-BM3D produces slightly smoother contours (e.g., the contour inside the window of the 
middle figure), but removes some image texture (e.g., the brick structure on the left in the middle figure). 
 

D. Limitations, Extensions, and Applications 

Although RCM denoising is fast and simple computationally, it does require substantial memory to store the fixed 
tables.  The memory requirements are not significant for most personal computers, but may be an issue for image-
processing hardware or firmware in devices such as digital cameras.  We note, however, that each table is just a list 
of 8-bit numbers (unsigned bytes) and hence could be stored and retrieved like an image.  Also, the tables are 
relatively smooth and regular (see Fig. 6), and thus it should be possible to closely approximate them in some way; 
e.g., fitting them with a sum of appropriate basis functions.  (Note that the noisy pixels in Fig. 6 correspond to 
extremely rare context vectors. We find that quadrupling the training set smooth’s those regions, but has negligible 
effect on performance or appearance precisely because those context vectors are so rare.) 
 

 
Fig. 9. Denoising algorithms applied to the standard peppers image.  No additional noise was added to the original image. 

As an immediate practical application, RCM denoising can be used to denoise standard 24-bit sRGB images and 8-
bit gray scale images.  Another obvious application would be the denoising of raw camera images.  We have not yet 
implemented this application, but comparison of Figs. 7a and 7b suggests that the RCM denoising may be more 
effective if applied to the raw image, before demosaicing, which creates correlated noise (note the lower final MSE 
in Fig. 7b).  Of course, in many practical situations the raw image is not available. 
 
RCM denoising gets most of its power by measuring very local statistical structure.  The output of the 4th recursive 
step, ૑ෝସ, is quite accurate (Fig. 7), and has a support region of only 5x5 pixels (Fig. 5).  Other successful denoising 
algorithms generally have a larger support region, and thus it is possible that some hybrid approaches could produce 
better performance, assuming they capture more large-scale information than our simple regression-plane measure 
(Fig. 5e).  How much better image denoising can get is a matter of some debate [2,17].  We note, however, that 
attempts to set bounds on maximum possible denoising performance have assumed AWGN. 
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Fig. 10. Details of results from various algorithms from  images containing additional multiplicative correlated Gaussian noise.  The top image 
is from a natural scene taken from the CPS natural image database.  The bottom image is not a natural scene and is not contained in the 
database. 

V. CONCLUSION 

RCM denoising is remarkably effective given its conceptual and computational simplicity.  In this approach, recursive 
conditional means are measured directly (by simple averaging) from a large training set of natural images, for small (3 element) 
context vectors.  Denoising with the resulting fixed set of tables exceeds state-of-the-art algorithms in accuracy for realistic 
camera noise and matches them for additive white Gaussian noise.  RCM denoising is much faster than state-of-the-art 
algorithms.  This speed allows the method to be applied to very large images and, with further optimization, should allow it to be 
applied to video in real time. 
 
The recursive conditional means approach has also proved to be very effective for the task of upsampling (super resolution, 
[14]), and thus it is likely to be effective for a number of other basic image processing tasks. 
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Fig. 11. Example results for a larger portion of an image at a high noise level ሺߪ ൌ 25ሻ.  This image is not contained in the database. 

APPENDIX A 

Here we derive the rule used for combining multiple estimates of the true pixel value  into a single estimate.  This rule is 
optimal given certain assumptions, and is closely related to standard rules for cue combination [16].  Let c1,…,cn  represent n sets 
of known pixel values (sources of information) that are to be used in estimating a single unknown pixel value .  Using Bayes’ 
rule, the posterior probability of  given the known pixel values can be written as: 
 

     
 

1

1
1

, ,
, ,

, ,
n

n
n

p p
p

p

 
 

c c
c c

c c





                     (A1) 

 
Our first assumption is that given the true value of , ci is independent of cj for all i and j (i.e., the sources of information are 
statistically independent).  In this case, we have  
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Fig. 12. Details of results from various algorithms from images containing additional multiplicative white Gaussian noise.  The top image is 
from a natural scene taken from the CPS natural image database.  The middle image is not a natural scene and is not contained in the database.  
The bottom image is the standard Lena image.  The standard deviation of the added noise was 15. 
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Applying Bayes’ rule again, 
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Our second assumption is that the prior and posterior probability distributions are Gaussian.  In this case, we have 
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Where ui and i are the conditional mean and reliability of posterior probability distribution of  given ci, and u and  are the 
mean and reliability of the prior probability distribution of .  (Note that reliability is the inverse of the variance.)  Rearranging, 
we have 
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Consider the term inside the exponential.  Because this term is quadratic in  it follows that   1 , , np  c c  is Gaussian.  

Expanding, collecting terms, and completing the square, shows that  1, , np  c c  is of the form: 
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where K is the constant required to make the right side of the equation a probability distribution. 
 
The minimum mean squared error (MMSE) estimate is the expected value of the posterior probability distribution, and the 
maximum a posteriori (MAP) estimate is the mode of the posterior probability distribution.  It follows from eq. (A5) that the 
MMSE and MAP estimates are the same and are given by 
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Finally, note that the entropy of  ip  c  must be less than or equal to the entropy of p().  Thus, i  , and hence the 

denominator is always positive. 
 
In using eq. (A6), we set u   (the sample mean of the prior probability distribution of ), 21/   (one over the sample 

variance of the prior probability distribution of ), ˆ
i iu   (the sample mean of the posterior probability distribution of  given 

ic ), and 21i i   (one over the sample variance of the posterior probability distribution of  given ic ).  Eq. (A6) may not be 

valid if the two strong assumptions above do not hold, and thus should be regarded as an approximation. 

APPENDIX B 

Here we give the formulas used for planar regression.  The equation of a plane is  ,f x y Ax By C   .  Consider a square 

block of pixels of odd dimension n, where the center pixel is taken to be the origin.  The least squares estimates of the parameters 
of the plane are 
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The standard deviation from the best fitting plane is given by 
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