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Abstract

Correctly interpreting a natural image requires dealing properly with the effects of occlusion, and hence, contour
grouping across occlusions is a major component of many natural visual tasks. To better understand the mechanisms of
contour grouping across occlusions, we (a) measured the pair-wise statistics of edge elements from contours in
natural images, as a function of edge element geometry and contrast polarity, (b) derived the ideal Bayesian observer
for a contour occlusion task where the stimuli were extracted directly from natural images, and then (c) measured
human performance in the same contour occlusion task. In addition to discovering new statistical properties of natural
contours, we found that naive human observers closely parallel ideal performance in our contour occlusion task. In
fact, there was no region of the four-dimensional stimulus space (three geometry dimensions and one contrast dimension)
where humans did not closely parallel the performance of the ideal observer (i.e., efficiency was approximately
constant over the entire space). These results reject many other contour grouping hypotheses and strongly suggest that
the neural mechanisms of contour grouping are tightly related to the statistical properties of contours in natural images.

Introduction

Itis common in natural scenes for an object to be partially occluded
by one or more other objects (Fig. 1). Such occlusions can provide
useful depth and segmentation (figure-ground) information; for
example, if the bounding contour of an object can be identified, then
other contours intersecting that bounding contour are likely to be
occluded and hence likely to be at a greater distance and to derive
from a different physical source than the bounding contour (e.g.,
a different object). However, the existence of occlusions can also
greatly increase the difficulty of correctly interpreting natural images;
for example, an occluding object necessarily obscures image feat-
ures from the occluded objects, making identification of the oc-
cluded objects difficult.

The human visual system contains powerful contour grouping
mechanisms that are thought to play an important role in helping the
visual system both exploit occlusions and overcome the loss of
features produced by occlusions (e.g., Rock, 1975; Barrow &
Tenenbaum, 1986; Kellman, 2003). For example, contour grouping
mechanisms allow us to decide (correctly) that the two contours
passing under the red leaf in Fig. 1 arise from the same physical
source (surface boundary). These contour grouping mechanisms
undoubtedly evolved and/or develop in response to the properties of
natural environments, and thus, there have been recent efforts to
directly measure the statistical properties of contours in natural
images, with the aim of gaining a deeper understanding of the
image information available to support contour grouping and of
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developing more refined models of contour grouping (Geisler et al.,
2001; Elder & Goldberg, 2002; Martin et al., 2004).

One approach has been to extract contour elements from
natural images using an automatic edge detection algorithm and
then examine the pair-wise statistics of the extracted contour ele-
ments. Using this approach, Sigman et al. (2001) and Geisler et al.
(2001) examined the statistics of the geometrical relationship be-
tween contour elements and found that there is a local maximum in
the pair-wise probability distribution for edge elements that are
approximately co-circular (i.e., are approximately tangent to a com-
mon circle, but see later). Geisler et al. (2001) also showed that
there is a larger local maximum for edge elements that are appro-
ximately parallel (i.e., are approximately tangent to parallel lines).
These two properties undoubtedly reflect the fact that natural con-
tours are relatively smooth (e.g., the bounding contours of a branch
or leaf in Fig. 1) and that natural images contain many parallel
contours (e.g., the two sides of a branch or leaf in Fig. 1). Such
measurements of pair-wise statistics can identify important statis-
tical structure that is relevant for grouping; however, the measure-
ments are obtained completely within the domain of images.

Potentially more relevant statistical relationships can be ob-
tained by measuring across-domain statistics, which involves mea-
surements both within images as well as within the corresponding
environments in order to obtain ground truth information. Measure-
ments of ground truth are essential for determining how a rational
observer should use image information when interacting with, or
drawing inferences about, the environment. (For more discussion of
the distinction between within-domain and across-domain statistics,
see Geisler, 2008.) Direct measurement of ground truth information
can be difficult, and thus, a common shortcut is to exploit hand
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Fig. 1. (Color online) Examples of occlusion in natural scenes.

segmentation by human observers (Brunswik & Kamia, 1953;
Geisler et al., 2001; Elder & Goldberg, 2002; Martin et al., 2004).
The premise of this approach is that under some circumstances,
human observers can make veridical assignments of image pixels to
physical sources in the environment. To the extent that this as-
sumption holds (see later), the assignment data can provide useful
ground truth information.

The present study uses the hand segmentation database for
natural images reported in Geisler et al. (2001). In that study, we
applied an automatic algorithm to detect local contour elements (at
a small spatial scale) in a diverse collection of natural images and
then had observers assign the elements to physical sources (surface/
material boundary contours, shadow/shading contours, or surface
marking contours). The earlier study only considered the statistics
of the geometrical relationship between contour elements. In the
current study, we extend the statistical analysis to include the con-
trast relationship between contour elements (specifically the contrast
polarity). We then describe a contour grouping experiment where
subjects are required to decide whether a pair of contour elements at
the boundary of an occluder belongs to the same or different phy-
sical contours. We then compare human performance in this task
with that of a parameter-free ideal observer that directly uses the
measured natural scene statistics to perform the contour occlusion
task. A preliminary report of the study described here appeared in
a conference proceedings (Geisler et al., 2008).

Materials and methods

Natural contour statistics

Much of the procedure for measuring contour statistics is de-
scribed elsewhere (Geisler et al., 2001). Briefly, we analyzed a set
of natural images (480 X 480 pixels) that were picked to be as di-
verse as possible, without containing human-made objects or struc-
tures. The images included close-up and distant views of different
environments (i.e., forests, mountains, deserts, plains, and seashore)
and image constituents (e.g., water, sky, snow, plants, trees, and
rocks). Small regions cut from three of the images are shown at the
top of Fig. 2 (thumb nails of all the full images can be found in
Geisler et al., 2001, also see fig. 3a).

Edges were extracted from each image using an automatic al-
gorithm containing the following steps: (a) convert the image to gray
scale; (b) filter the gray scale image with a nonoriented log Gabor
filter (in the Fourier domain) having a spatial frequency bandwidth
of 1.5 octaves and a peak spatial frequency of 0.1 cycles/pixel (the
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frequency was picked to provide a dense sampling of contours); (c)
identify the locations of zero crossings in the filtered image; (d) at
each zero crossing point in the (unfiltered) gray scale image, apply
a bank of odd and even log Gabor filters with a spatial frequency
bandwidth of 1.5 octaves, a peak spatial frequency of 0.1 cycles/pixel,
and an orientation bandwidth of 40 deg; (e) normalize the filter
responses by dividing by the sum of the responses across all
orientations; (f) combine the odd and even responses to obtain an
energy response; (g) find the peak of the energy response across
orientation to determine the local contour orientation; (h) eliminate
edge elements with peak normalized energy responses that do not
exceed a low threshold; (i) interpolate the even and odd responses to
better localize the edge position; and (j) reapply an odd log Gabor
filter at the estimated edge element orientation and position in the
gray scale image to determine the contrast polarity (the sign of the
contrast) of the edge element. The last two steps were not applied in
the original study (Geisler et al., 2001). The above edge extraction
procedure was applied to synthetic test images with known contour
positions, orientations, and contrast polarities and was found to be
accurate for the test images.

We note that the extraction of contrast polarity information is
new to the current study. We chose not to examine contrast mag-
nitude because the images were neither luminance nor color cali-
brated, and thus for these images, we can only be confident about
measurements of edge geometry and contrast polarity.

The colored pixels in the middle panels of Fig. 2 are examples
of the locations of extracted edge elements. The arrows in the bottom
panels of Fig. 2 show a small subset of the extracted edge elements.
The center point of an arrow indicates the position of the edge
element (corresponding to a pixel in the middle panels), and the
orientation of the arrow indicates the orientation of the edge ele-
ment. Reversals in arrow direction indicate flips in contrast polarity.

We measured both the within-domain and the across-domain
statistics of edge geometry and contrast polarity. For both, we
measured pair-wise statistics. Specifically, for each pairing of ex-
tracted edge elements, we considered one of them as the reference
and described the geometrical and contrast relationship of the
other element relative to the reference element (every edge ele-
ment served as a reference element). Thus, we average over the
absolute orientation of the reference element. The relationship
between the elements is described by four parameters (Fig. 3): the
distance between the centers of the edge elements (d), the direction
of the second element from the reference element (—90° = ¢ =
90°), the orientation difference between the edge elements (—90° =
0 = 90°), and difference between the edge elements in contrast
polarity (p = 1, same polarity; p = 0, different polarity). Thus, the
pair-wise statistics can be described by a four-dimensional prob-
ability density function, p(d,$,0,p). This function was estimated by
binning the edge element pairs along the four dimensions (6 dis-
tances X 36 directions X 36 orientation differences X 2 contrast
polarities for a total of 15,552 bins). This four-dimensional pro-
bability distribution summarizes the within-domain statistics of
edge element geometry and contrast polarity. We briefly describe
these statistics in the Results section, but the statistics of primary
interest here are the across-domain statistics, which were obtained
using the hand segmentation results.

For the across-domain statistics, we first had two observers
segment the extracted edge elements into groups that belong to the
same physical contour. The observers viewed the images with each
extracted edge element labeled by a single colored pixel (e.g.,
middle panels in Fig. 2). They then selected those pixels that belong
to the same contour (e.g., the yellow pixels in the middle panels).
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Fig. 2. Contour locations and contour groups for small example patches from three different natural images. The contour locations and
contrast polarities were detected by an automatic algorithm. The contour groups were obtained by hand segmentation. The direction of
the arrows in the bottom images indicates the contrast polarity of the contour; the different colors represent different groups (note that
because colors are randomly selected from a color palette, different groups may have a similar color).

To aid them in the segmentation, they were allowed to zoom in and
out, toggle to the full color image (upper panels), and toggle the
colored pixels on and off. The fundamental premise here is that most
of the segmentations correspond to the physical ground truth (i.e., the
grouped pixels do indeed arise from a common physical source—a
surface/material boundary, a shadow/shading boundary, or surface
marking boundary). The observers noted that some ambiguous cases
arose but that they were highly confident about most of the pixels
assignments, which was supported by the high inter-observer agree-
ment (Geisler et al., 2001; also see Discussion). Given the segmen-
tation data, it is then possible to estimate (by binning the edge element
pairs) the across-domain probability distribution p(c,d,®,0,p),
where c¢ takes on two possible values: ¢ = 1 if the edge elements
belong to the same contour and ¢ = 0 if they belong to different
contours. The images and segmented contours can be found at the
following Web site: http://www.cps.utexas.edu/kodakdb/.

Contour occlusion task

In the contour occlusion task, we measured subjects’ ability to
identity whether a pair of edge elements passing under an occluder
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Fig. 3. Definition of parameters describing the geometrical and contrast
relationship between a pair of contour elements.
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belongs to the same or different physical contours. On half the
trials, the edge elements belonged to the same contour and on half
to different contours.

On each trial, a pair of edge elements was extracted directly
from our database of natural images via the following procedure.
First, an image was randomly selected, and then, a single edge ele-
ment was randomly selected from that image (e.g., one of the two
green-highlighted edge elements in Fig. 4a). Second, we considered
the set of all edge elements at a given distance from the selected
edge element, where the distance equaled the occluder diameter for
that trial. On “different” trials, we randomly selected an edge ele-
ment from those that belonged to a physical contour different from
the contour containing the initially selected element. On “‘same”
trials, we randomly selected from those elements (usually just one
or two elements) that belonged to the same physical contour as
the initial selected element (e.g., in Fig. 4a, the second green-
highlighted element belongs to the same physical contour). Same
and different trials occurred randomly with equal probability, and
subjects were informed that the probabilities were equal. Forcing
the prior probabilities to be equal is unnatural but greatly reduces
the number of trials required to obtain useful data. As will be seen
below, subjects had no trouble dealing with equal prior probabilities.

Once the edge elements were selected, they were displayed to the
subject as shown in Fig. 4b. Specifically, the 480 X 480—pixel image
subtended 16 deg in visual angle with a gray background luminance
of 55 cd/m? and a gray, circular occluder of 60 cd/m?. (The video
mode was set to 1280 X 960 and the image upsampled to allow
better anti-aliasing of the occluder boundary.) As in Fig. 4b, the 3.0
c/deg edge elements were always located on opposite ends of a line
through the center of the occluder. The size of the edge elements in
the display was the same as that of the oriented filter kernels used to
extract the edge elements when we measured the pair-wise sta-
tistics. The center pixel of the edge element sat on the occluder
boundary. The contrast of the edge elements was set so that their
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Fig. 4. (Color online) Contour occlusion task stimuli. The largest occluder diameter was 90 pixels (shown here), corresponding 3 deg of

visual angle.

locations and orientations were clearly visible (Michelson contrast =
0.6). On each trial, the display remained up until the subject
responded, and the subject was free to make eye movements.

Performance was measured, in counterbalanced blocks, for
occluder diameters of 20, 40, and 90 pixels (0.67, 1.33, and 3 deg).
(We note that it was not possible to measure performance for
occluder diameters greater that 90 pixels because there are too few
contours of sufficient length in the database.) In addition, we mea-
sured performance with and without the contrast polarity infor-
mation; in the blocks where the polarity information was absent,
we replaced the odd symmetric edge elements with even sym-
metric elements.

Finally, we also manipulated feedback. For the first 600 trials of
the experiment, no feedback was provided; for the second 600 trials,
feedback was provided on each trial (a tone indicated whether the
response was correct or incorrect); for the third block of 600 trials,
no feedback was provided. We chose to manipulate feedback be-
cause of concern that our occlusion displays were so simplified
(unnatural) that subjects may not be able to use the edge geometry
and contrast information in the way that they would normally use
that information in natural images. We reasoned that if the subjects
show no improvement with feedback, then it strongly suggests that
they are able to apply their normal contour processing mechanisms
to our simplified displays.

Seven subjects participated in the study. Two were familiar with
the aims of the study, and five were naive. On the first day (prior to
the main experiment), each subject completed 10 trials designed to
help them understand the task and display. Specifically, after each
stimulus presentation and response (which was the same as in the
main experiment), the subjects were shown a display like the one in
Fig. 4a, which illustrated exactly how the simplified display was
obtained from the original image. For the remainder of the study,
the subjects only saw displays like the one in Fig. 4b. The study
extended over a period of 3-6 days, depending on the subject.

Ideal observer for contour occlusion task

The only information available to perform the contour occlusion
task is the geometrical relationship between the pair of edge
elements, and in some conditions, the geometrical and contrast
polarity relationship between the elements. Thus, using the mea-
sured contour statistics, we can derive the performance of a rational
(ideal) observer that has perfect knowledge of the natural scene
statistics of edge element geometry and contrast polarity. An ideal

observer that wishes to maximize accuracy will compare the
posterior probability that the observed contour elements belong to
the same physical contour with the posterior probability that they
belong to different physical contours and then respond ‘“‘same” if
the former posterior probability is the larger:

if p(c=1|d, ¢,0,p) >p(c=0ld, .0, p),
then respond ‘‘same contour’’.

()

In the Appendix, we show that this decision rule is identical to
this one:'

p(¢707p|d7czl)
p(¢707p|d7czo)

p(c=0ld)
p(c=1|d)

if > then respond ‘‘same contour’’.

(2)

The term on the left is a distance-dependent likelihood ratio:
the probability of the observed direction, orientation and polarity
relationship between the edge elements given the observed dis-
tance and that the elements belong to the same contour, divided by
the probability of the same observed relationship between the ele-
ments given the observed distance and that they belong to dif-
ferent contours. We represent this likelihood ratio by (¢, 6, p|d).
The term on the right is the ratio of the prior probabilities that two
edge elements separated by distance d belong to different versus the
same contour. We represent this distance-dependent decision cri-
terion by ((d). In the present contour occlusion task, we forced the
prior probability of the edge elements belonging to the same
contour to be 0.5, and hence, we forced the ideal criterion to be
1.0 (B(d) = 1.0). The subjects were told that the prior probabilities
were 0.5 before the start of the experiment. We applied eqn. (2) to
each individual trial for each subject, which allowed us to compare
human and ideal observer responses on a trial-by-trial basis.

Results

This section begins with a description of the pair-wise statistics
of contour elements within natural images (the within-domain
statistics), followed by a description of the pair-wise statistics of

'We note that representing the optimal decision rule in the form of
eqn. (2) is an improvement over the formulation described in Geisler et al.
(2001). The weakness of the previous formulation is that there is no
meaningful way to measure the decision criterion (ratio of the priors), which
leaves the criterion as a free parameter. Here there are no free parameters.
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contour elements referenced to the ground truth of whether the
elements arise from the same or different physical sources (the
across-domain statistics). Finally, we describe the results of
contour occlusion experiment and compare them with the pre-
dictions of an ideal observer that has full knowledge of the
measured across-domain statistics.

Natural contour statistics: Within domain

The within-domain statistics are shown in Fig. 5a, which plots the
measured four-dimensional probability distribution, p(d,¢,0,p),
normalized to a peak of 1.0 for each distance bin. The reference ele-
ment is not shown but would be a horizontal element in the center of
the diagram. Each of the line segments in the plot represents one of
the 15,552 bins covering the four-dimensional space (note that the
line segments are so dense that they blend into solid regions.) In this
figure, distance (d) from the reference is represented by the six
rings, which correspond to the six distance bins. Direction (¢) is
represented by the angular direction along a ring (range = *=90°;
we can restrict this range to =90° because a plot with a range of
+180°, for a given contrast polarity, is symmetric about the origin).
Orientation difference (6) is represented by the orientation of the
line segment (range = *£90°) drawn at a given distance and di-
rection. Contrast polarity (p) is represented by the two halves of the
display, the right half for same polarity and the left for opposite
(Fig. 3). As can be seen, the most common relationships between
edge elements are collinear and same polarity at near distances and
parallel and same polarity at larger distances. As noted in Geisler
et al. (2001), the probability distribution in Fig. 5a reflects the
combination of two general trends in natural images, which are
revealed in Fig. 5b and 5c. Fig. 5b plots, for each distance, direction
and polarity, the highest probability (most likely) orientation
difference. In general, the most likely orientation difference is
zero. This result undoubtedly reflects the fact that there is a great
deal of parallel structure in natural images. Fig. 5c plots for each
distance, orientation difference and polarity, the highest probability
(most likely) direction. The most likely direction is the one
consistent with approximate co-circularity (although there are
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systematic deviations). This result undoubtedly reflects the fact
that natural contours are relatively smooth (orientations tend to
change slowly along natural contours).

The new result here, not reported in Geisler et al. (2001), is that
these trends also hold when contrast polarity reverses. It is inter-
esting to note, however, that two displaced “‘fans” appear in the
opposite polarity side of Fig. 5c (see also Fig. 5a). Presumably this
occurs because nearby parallel contours tend to be of opposite
polarity (e.g., the two sides of a branch).

Natural contour statistics: Across domain

The across-domain statistics of natural contours are shown Fig. 6.
In order to be consistent with the new optimal decision rule given
in eqn. (2), the plotting conventions here are somewhat different
from those of Geisler et al. (2001). Specifically, Fig. 6a plots the
distance-dependent decision criterion (ratio of priors) [(d), and
Fig. 6b plots the distance-dependent likelihood ratio (&, 6, p|d).
As can be seen, for any given distance, the most likely geomet-
rical relationship between edge elements is one consistent with
approximate co-circularity. This is true whether the polarity is the
same or opposite; however, the likelihoods (for approximately co-
circular geometrical relationships) are lower for opposite-polarity
edge elements. We note, however, that there are systematic
deviations from co-circularity; the relationship between pairs of
edge elements tends to be more parabolic than co-circular (see
Discussion). Not surprisingly, the ratio of the priors increases
approximately in proportion to (but slightly more rapidly than)
the square of the distance (Fig. 6a).

Fig. 6b can be used directly to obtain the predictions of the ideal
observer in the contour occlusion task. Recall that the prior
probability of two edge elements belonging to the same physical
contour was forced to be 0.5, and thus, the optimal decision rule is to
respond ‘‘same contour” if the likelihood ratio is greater than 1.0.
Fig. 7a plots all the likelihood ratios in Fig. 6b that are greater than
1.0. Every geometrical and contrast polarity relationship repre-
sented by a line segment in this plot is one for which a rational
observer would respond ‘‘same contour;” otherwise, the observer

p=0 p=1 relative prob.
!1.0
0.1
0.01
d = 48 pixels 0.001

Fig. 5. (Color online) Within-domain co-occurrence statistics of contour elements in natural images. (a) Four-dimensional joint probability
distribution for pairs of contour elements. One element of the pair is represented by a horizontal line segment at the center of the plot (this
line segment is not drawn). Each line segment that is drawn in the figure represents one of 15,552 bins covering the four-dimensional
space. The ring containing the line segment represents distance; the position around the ring represents angular direction; the orientation
of the line segment represents the orientation difference from the reference element; and the side of the figure where the line segment is
drawn represents the relative contrast polarity (same on right, opposite on left). The probabilities in each ring have been normalized to
a peak of 1.0. (b) For each distance, direction, and contrast polarity, the plotted line segment represents the most probable orientation
difference. (¢) For each distance, orientation difference, and contrast polarity, the plotted line segment represents the most probable
direction. In b and ¢, the entire plot has been normalized to a peak of 1.0.
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Fig. 6. Across-domain co-occurrence statistics of contour elements in natural images. (a) Ratio of the prior probabilities that a pair of
contour elements belongs to different versus the same physical source, as a function of distance between the pair of elements. (b) Plot of
the likelihood ratio for a given relationship between pairs of contour elements. A likelihood ratio greater then 1.0 means (given equal
priors) that it is more likely that the elements belong to the same physical contour; a ratio less than 1.0 means that it is more likely that the
elements belong to different physical contours. [For each distance, direction, and polarity, the orientation difference bins (line segments)
are drawn in rank order starting from the lowest likelihood; thus, the highest likelihoods are the most visible in the plot.]

would respond “different contour.” Here one can see even more
clearly that edge elements that are approximately co-circular
should be linked together.

Interestingly, even if the contrast polarity of edge elements
reverses across an occlusion, there are still conditions where the
response should be ““same contour.”” However, the criterion for re-
sponding ‘‘same contour’ is more stringent—the elements must be
more nearly collinear. This result may seem counterintuitive at first
but is explained by the fact that the boundary of a foreground object
often crosses over background objects of different luminance, some
of greater and some less of luminance than the foreground object
(Field et al., 2000).

In a contour occlusion task with completely random edge pair
selection, a rational observer will take into account the distance-
dependent prior probabilities. One way to describe the decision
rule is to divide both sides of eqn. (2) by the distance dependent

a pP=0 p=1 likelihood ratio
100
1
-
d = 48 pixels 0.01

27
1
b=0°
0.01

prior to obtain the distance-dependent posterior probability ratio.
If this posterior probability ratio exceeds 1.0, then the elements
should be linked. Fig. 7b plots all the posterior probability ratios
that are greater than 1.0. We see that with natural priors, a rational
observer should be much more conservative in linking edge
elements, especially at larger distances.

Contour occlusion task

The contour occlusion task was run first without feedback, then with
trial-to-trial feedback, and finally again without feedback. Feedback
was manipulated because of concern that the occlusion displays
were so unnatural that subjects would not be able to use the edge
geometry and contrast information in the way that they would
in natural images. Fig. 8 summarizes the overall performance of
each of the seven subjects in the study, across the three phases of

b p=0 p=1 posterior ratio

h=90°

i

d = 48 pixels

Fig. 7. (Color online) Edge-linking decision rules. Each line segment in these diagrams represents a geometrical and contrast polarity
relationship (relative to the center reference) for which a pair of edge elements is linked. (a) Decision rule for ideal observer in contour
occlusion task with equal prior probabilities of edge elements belonging to the same or different contours. (b) Decision rule for ideal
observer in contour occlusion task with natural prior probabilities of edge elements belonging to the same or different contours (Fig. 6a).
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feedback. The vertical axis shows overall human accuracy minus
the overall ideal observer accuracy on the same stimuli. Values less
than zero indicate performance below ideal. The important point of
this figure is that performance was relatively constant before, during,
and after the feedback sessions, except perhaps for one subject. The
black curve shows the average performance for all seven observers.
We conclude that subjects started the experiment with stable
decision criteria and that there is no evidence that they were using
different criteria from what they would use in natural scenes (for the
dimensions of edge element geometry and contrast polarity).

Therefore, in subsequent analyses, we combined the data across
the phases of feedback.

The average hits and false alarms of the human subjects and ideal
observer, as a function of occluder diameter, are shown in Figs. 9a
and 9b, respectively. The green symbols and curves are for the
conditions where both edge element geometry and contrast polarity
were displayed (g + p). The red symbols and curves are for the
conditions where only the edge element geometry was displayed (g).
Humans and ideal observers are affected similarly by occluder
diameter and exclusion of contrast polarity information. As oc-
cluder diameter increases, hit rate declines and false alarm rate
remains relatively constant. Excluding the contrast polarity in-
formation causes a slight reduction in hit rate (average of 1.3% for
humans and 0.5% for ideal) but a more substantial increase in false
alarm rate (average of 8.6% for humans and 5.6% for ideal). The
similarity of human and ideal performance can be quantified by
converting the hit and false alarm rates into d’ values for real and
ideal observers and plotting their ratio. A constant ratio means
constant efficiency. As shown in Fig. 9c, efficiency is high and
nearly constant with occluder diameter and perhaps slightly higher
when contrast polarity information is presented. Near-constant
efficiency is also seen for the individual subjects (Fig. 9d). Overall,
these results suggest that humans have good knowledge of the pair-
wise statistics of edge element geometry and contrast polarity in
natural images and are able to use that knowledge efficiently.

A more detailed comparison of human and ideal decision rules
can be obtained by examining the individual trials. Fig. 10 plots
histograms of the specific stimuli associated with hits, misses, false

No Feedback Feedback No Feedback

Human minus Ideal Accuracy (%)
&
T

1-600 601 - 1200

Trial Number

1201 - 1800

Fig. 8. (Color online) Effect of practice with feedback on the overall
performance of seven subjects. The solid curve is the average of the seven
subjects, which is 4.0% below ideal. (Without the subject who showed strong
practice effects, the average human performance is 2.8% below ideal.)
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alarms, and correct rejections, combined across all seven subjects.
Fig. 11 plots the corresponding histograms for the ideal observer
(on exactly the same stimuli). The plotting convention is similar to
that for the natural contour statistics (Figs. 5-7) except that there
are only three rings corresponding to the three occluder diameters,
and the line segments are half length, with the bases of the line
segments at the centers of the direction bins.

The first observation is that the subjects (like the ideal observer)
do not show a strong bias on average; the hits and correct rejections
are about equally frequent, and the false alarms and misses are about
equally frequent (see numbers in parentheses). The second obser-
vation is that humans respond very similarly to the ideal observer
along the various stimulus dimensions (distance, direction, orien-
tation difference, and contrast polarity); there are no obvious regions
of stimulus space where humans are particularly inefficient. In other
words, the human visual system appears to implement an accurate
representation of the optimal decision rules captured in Fig. 7a.

To quantify the similarity of the human decisions to those of the
ideal observer, we analyzed, for each bin in Figs. 10 and 11, the
trials in which the human observers made a decision that was
incorrect according to the ideal observer (i.e., according to the
measured natural scene statistics). There are two types of incorrect
decisions, and those were considered separately. First, for each bin,
we counted the number of times the human observers judged the
two contour elements as belonging to different contours, when
according to the ideal observer they should have judged them as
belonging to the same contour. Second, for each bin, we counted the
number of times the human observers judged the two contour
elements as belonging to the same contour, when according to the
ideal observer they should have judged them as belonging to dif-
ferent contours. Finally, a Z score (the number of average standard
deviations separating human and ideal decisions) was computed for
each bin based on the binomial probability distribution,

pn—0 | 2pn
1-p

©)

(1=p)pn+0
2

where n is the number of stimuli in the bin and p is the observed
proportion of incorrect decisions. All Z scores are plotted in Fig. 12.

Fig. 12 confirms the impression obtained by comparing Figs. 10
and 11; namely, there are no obvious regions of stimulus space
where humans are particularly inefficient. If one assumes that
a significant difference between human and ideal decision criteria
corresponds to two standard deviations (a Z score of 2.0), then Fig.
12 also shows that there are very few significant differences, and the
few that are significant may be due to chance since there was no
correction for the multiple statistical tests.

Discussion

Partial occlusion of one object by another is a frequent event in all
natural scenes, and thus, many natural tasks involve interpolation of
partially occluded contours. The present study considered a simple
task, from this family of natural tasks, where the observer is required
to decide whether or not a pair of contour segments passing under an
occluding surface belongs to the same or different contours. There
are a number of sources of information that a visual system might
exploit in performing this contour occlusion task, including
geometry, luminance contrast, chromatic contrast, motion parallax,
and binocular disparity relationships between contour segments.
Because the contour occlusion task is ubiquitous and is a critical
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Fig. 9. (Color online) Performance of seven subjects and the ideal observer in the contour occlusion experiment. (a) Average percent hits for
human and ideal observers plotted separately for tasks where the contrast polarity cue was present (green) and absent (red). (b) Average
percent false alarms for human and ideal observers plotted separately for contrast polarity cue present (green) and absent (red). (¢) Average
ratio of sensitivity (d') of human and ideal observers plotted separately for contrast polarity cue present (green) and absent (red). (d) Ratio of
sensitivity (d') of human and ideal observers plotted separately for each of the human observers. Pixel size was 2 min of arc.

component of natural image interpretation, it seems certain that the
human visual system exploits all these sources of information.
However, it is not practical to consider all of them simultaneously,
and thus, the present study focused on the geometric and luminance
contrast relationships between contour segments.

The specific aims of the study were fourfold: (a) measure some
of the natural scene statistics relevant to performing the contour
occlusion task (i.e., the pair-wise statistics of contour geometry
and luminance contrast polarity); (b) derive the Bayesian decision
rule that optimally uses those specific natural scene statistics to
perform the task; (c) measure human performance in the natural task,
where only those stimulus dimensions for which the statistics were
measured are presented to the human subjects; and (d) compare
the details of human performance with those of the ideal observer.

The measurements of the natural scene statistics were system-
atic and extended the results reported in Geisler et al. (2001). One
new finding was that if contrast polarity reverses, there is a sub-
stantially increased probability that the contour elements do not
belong to the same physical contour (Fig. 6b); nonetheless, if the
contour elements are nearby and if they are nearly co-linear, then it
is still more likely that they do belong to the same contour (Fig. 7).
Another new finding was that the prior probability of a pair of
contour elements belonging to different contours increases approx-
imately in proportion to square of the distance (Fig 6a).

The derivation of the ideal observer’s decision rule was straight-
forward, but in doing so for the contour occlusion task, we were led to
a slightly improved formulation (eqn. 2) over that reported in Geisler
et al. (2001). The advantage of the new formulation is that it ex-
plicitly includes the distance-dependent prior probability and likeli-
hood of contour elements belonging to the same physical contour.

To directly compare human and ideal observer performance
(without free parameters), we devised a simple contour comple-
tion task where the stimuli were extracted directly from natural
images and where the only information available to the subjects
was the geometry and contrast polarity of the two contour ele-
ments at the boundary of the occluder (Fig. 4). We found that two
experienced and five naive subjects performed uniformly well in
this task, with or without feedback and with little practice (82%
correct across all subjects and conditions). This is surprisingly good
performance given all the other sources of information in natural
scenes that were not made available to the subjects. The perfor-
mance of the ideal observer paralleled and slightly exceeded that of
the human subjects, confirming that the geometry and contrast
polarity of contour elements at the boundary of an occluder provide
important information for dealing with occlusions in natural scenes.
Detailed comparison of the decisions made by the humans and ideal
observer revealed a remarkable consistency—there were no regions
of the geometry and contrast polarity space where humans were
consistently more or less efficient. Thus, we conclude that humans
use contour geometry and contrast polarity information with high
precision when interpreting natural scenes.

The statistics and ideal observer analysis of contrast polarity
reported here complement the results of Elder and Goldberg
(2002). They measured and analyzed contrast magnitude (averaged
over contrast polarity) and showed that it provides a modestly
useful cue for contour grouping. They conclude that contrast cues
are much less useful than geometrical cues. However, they did not
consider contrast polarity, which we find to be a quite useful cue.
Presumably, contrast is even more useful when the two cues
(magnitude and polarity) are combined.
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Fig. 10. (Color online) Distribution of specific stimuli associated with (a) hits, (b) misses, (¢) false alarms, and (d) correct rejections, for the
human observers. The three rings correspond to the three occluder diameters; the location around a ring corresponds to the direction from
the reference element; and the orientation of the line segment corresponds to the orientation difference between the elements. The right
side of the plot represents the same contrast polarity and the left the opposite polarity. The numbers in parentheses are the total numbers of
trials represented in each of the plots. (Note that the line segments in this plot are half the length of those in Figs. 5-7, but otherwise the

plotting conventions are the same.)

The edge element statistics for natural contours described here
are relevant for real contour occlusion tasks in the natural environ-
ment, but obviously they do not capture all the statistical information
potentially available to the human visual system, including color,
texture, disparity, motion parallax, and curvature information. Hope-
fully these other sources of information will be measured in the future.
Nonetheless, it is surprising how well humans and ideal observers
can perform with only edge element geometry and contrast polarity.

Another potential limitation of the current study is that we did
not directly examine occlusions in natural images but inferred the
statistics from all the contours in the natural images. This is unlikely
to be a serious limitation. First, there is probably nothing special
about those pieces of contour in a natural scene that are occluded or
intersect an occluding surface, because what is occluded or inter-
sects an occluding surface depends on the position of the observer
(which is always changing). Second, most physical contours will
sometimes be part of the background and sometimes part of an
occluding surface, again because humans (or objects) move around.

Using hand labeling to measure across domain statistics

To determine separately the statistics of image contour elements
from the same physical contour and from different physical con-
tours, it is necessary to know which image contour elements do, in
fact, arise from the same physical contour. To obtain this ground

truth information, we used the hand segmentations by two humans
who were shown the (objectively detected) contour element loca-
tions overlaid on the underlying full color image. The assumption
is that when given full image information, humans are able to
make veridical assignments of contour elements to physical sources
(contours). Because of ambiguity in natural images (especially in
dense contour regions), there are undoubtedly some labeling errors.
However, several factors suggest that the error rate is relatively low.
First, most of the segmentations were made with high confidence.
Presumably, this high confidence is based on an adult’s enormous
experience interacting with the environment. For example, the
reader might visually inspect her/his local environment (with one
eye closed and no head movement), select possible physical contour
sources, and then physically check those source assignments for
accuracy (e.g., touch, move, or closely inspect objects to verify that
the source is a unique shadow, surface boundary, or surface reflec-
tance contour). The reader will find that very few, if any, mistakes
are made, in agreement with the reader’s high self-confidence.
Second, there was a high level of agreement between the segmenta-
tions made by the two humans (Geisler et al., 2001). If the per-
centage of labeling errors is modest, then they should have little
effect on the average statistics. Third, the objective within-domain
statistics in Fig. 5S¢, which most likely reflect the shapes of natural
contours, are reasonably consistent with the across-domain statis-
tics of contours in Fig. 6b (also see next section).
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Fig. 11. (Color online) Distribution of specific stimuli associated with (a) hits, (b) misses, (c) false alarms, and (d) correct rejections, for the
ideal observer. (For more description of the plots, see legend for Fig. 10.)

Measurements of the ground truth correspondence between
image properties and physical environmental properties are crit-
ical for understanding the natural scene statistics relevant for the
specific natural tasks that an organism normally performs. Al-
though hand labeling methods are practical in some situations, it is
also important to exploit more direct physical measurement such
as combining range images with calibrated color images in order
to, for example, align ground truth depth discontinuities with
image contours (see Geisler, 2008, for more discussion).

Contour grouping across occlusions

The hypothesis that contour grouping involves some form of smoo-
thness constraint was first proposed by the Gestalt psychologists
as the principle of “good continuation” (Wertheimer, 1958) and
has been the basis for many models of human performance (e.g.,
Kellman & Shipley, 1991; Field et al., 1993; Feldman, 2001; Neumann,
& Mingolla, 2001) and for many computational vision algorithms
(e.g., Grossberg & Mingolla, 1985; Sha’ashua & Ullman, 1988;
Parent & Zucker, 1989). Our results suggest that the specific
smoothness constraint that humans use is based directly on the
average statistical properties of contours in natural images. Although
this constraint is qualitatively similar to many earlier proposals, it is
quantitatively different. For example, a simple assumption is that
human contour interpolation favors co-circular (including collinear)
relationships between edge elements (Sigman et al., 2001). However,
both the natural scene statistics and the decisions of our human
observers differ substantially from a preference for co-circular

relationships. To see this, consider edge elements at a distance
d and direction ¢ from the reference element in Fig. 6b. If the most
likely element orientation difference 6 were co-circular with the
reference element, then the highest-likelihood orientation difference
would be 2¢, independent of the distance d. The solid horizontal
lines in Fig. 13 plot this predicted relationship for different directions
from the reference element. The symbols show the actual highest
likelihood values from Fig. 6b (excluding likelihoods less than 1.0).
Except for a direction of zero, where the orientation difference is con-
sistent with a collinear relationship, the highest-likelihood orientation
differences are less than those predicted by a co-circular relationship.

Another hypothesis for contour grouping (and interpolation) is
based on the definition of “‘relatable” contours: Two edge elements
are relatable if their linear extensions (toward each other) intersect
and if the outer angle of their intersection is acute (Shipley &
Kellman, 1991; Kellman, 2003). The range of relatable orientation
differences decreases as a function of direction so that for a di-
rection near 0 deg, the range of relatable orientation differences is
0-90 deg and for a direction of 50 deg, the range of relatable ori-
entation differences is 50-90 deg (see Supplementary Fig. 1). Our
measurements of natural contours show that many natural contours
are not relatable and that many relatable contours are unlikely to
occur in natural scenes (Fig. 7a). Our measurements of (naive)
human performance in the natural contour occlusion task show that
human decisions closely match the natural scene statistics; thus,
humans do not perceptually link many edge element pairs that are
relatable, and they do perceptually link many contour element pairs
that are not relatable.
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Fig. 12. (Color online) Statistical comparison human and ideal decisions. Each line segment represents a geometrical and contrast polarity
relationship between contour elements where humans made nonoptimal decisions (as defined by the ideal observer). The three rings
correspond to the three occluder diameters; the location around a ring corresponds to the direction from the reference element; and the
orientation of the line segment corresponds to the orientation difference between the elements. The right side of each plot represents the
same contrast polarity and the left the opposite polarity. A Z score of 2.0 represents a significant difference between human and ideal

observers at the 0.05 level (uncorrected for multiple statistical tests).

Interestingly, the statistics of natural contours are roughly con-
sistent with a parabolic relationship. If the most likely element
orientation difference 6 has a parabolic relationship to the reference
element (with the origin of the parabola tangent to the reference
element), then the highest-likelihood orientation difference would
be tan~!(2tan ¢), independent of the distance d. The horizontal dashed
lines in Fig. 13 show the predictions of a parabolic relationship.
However, it is important to keep in mind that this only summarizes
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Fig. 13. (Color online) Orientation difference as a function of the distance and
direction of one edge element from another. The symbols show the most
likely orientation differences for edge elements of natural contours (from the
upper quadrant of Fig. 6b; see also Fig. 7a). The solid horizontal lines show
the predictions if the most likely relationship were co-circular. The
horizontal dashed line shows the predictions if the most likely relationship
were parabolic.

the highest-likelihood orientation difference in each distance and
direction bin, whereas human performance in our task depends on
the entire likelihood distribution.

The approximately parabolic relationship between edge ele-
ments in natural images also holds for the within-domain statistics
in Fig. 5c (which also undoubtedly reflect the shape properties of
contours). This finding supports the validity of the hand segmen-
tation method used to obtain the across-domain statistics.

Singh and Fulvio (2005, 2007) had observers extrapolate smooth
contours across half-disk occlusion regions. They varied the disk
diameter and inducing contour shape. Observers set the direction
and orientation of the test edge element to smoothly extrapolate the
inducing contour. They found that observers extrapolate contours
with a bias toward decreasing curvature with increasing distance,
a bias more consistent with parabolic than circular contours. Their
result is therefore qualitatively consistent with our natural scene sta-
tistics and with our observer’s performance in the natural contour
occlusion task.

The finding of an approximately parabolic statistical relationship
between the edge elements of natural contours implies that natural
contours tend not to be circular in shape, but the finding does not
imply that contours tend to be parabolic in shape. Recall that all
elements on a contour serve as the reference (not just the elements at
points of the highest curvature) and that both edge elements in each
pair-wise comparison serve as the reference element. If natural
contours tend to be circular in shape, then no matter which elements
serve as the reference, one would expect a co-circular relationship
rather than the parabolic relationship in Figs. 5S¢ and 6b. On the other
hand, the observed parabolic relationship is not related to any
particular simple underlying shape. Rather, it is a purely statistical
result that undoubtedly depends on the fact that most natural
contours contain random changes in curvature, including changes
in the sign of the curvature (i.e., inflection points). Thus, no matter
where one starts on a contour, if a contour element at some distance
from the starting element happens to end up in a different direction
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from the direction pointed to by the orientation of the starting
element, then its orientation (because of the distribution of random
changes in curvature) ends up on average in a parabolic relationship
with the starting element. Our psychophysical results suggest that
humans use knowledge of this parabolic relationship (and the
appropriate range around it) to decide whether or not to link
contours passing under an occluding surface. We also note that even
though humans may know that most natural contours tend to
randomly change in curvature and to have one or more inflection
points, they probably choose to make smooth monotonic interpo-
lations (when forced to do so) because they generally have no
information that would allow them to select specific points behind
the occluding surface for an inflection or rapid change in curvature.
Of course, in cases with convincing information (e.g., a very wiggly
contour exiting both sides of the occluding surface), they would
probably make less smooth nonmonotonic interpolations.

Contour integration

Another useful task for investigating the mechanisms of contour
grouping over extended distances is the contour integration task
(Becketal., 1989; Field et al., 1993; Kovacs & Julesz, 1993). In this
task, the signal-plus-noise stimulus consists of an extended contour
defined by discrete contour elements embedded in a background of
random contour elements; the noise stimulus consists of only random
contour elements. The subject’s task is to detect the embedded
contour. Much has been learned about the mechanisms of contour
grouping by manipulating specific properties of the embedded
contour elements relative to those of the background elements. The
contour integration task is very useful because when the stimuli are
properly designed, the embedded contour can be only detected if
the visual system contains mechanisms that group contour elements
using the specific properties of interest. Our measured natural
contour statistics are potentially relevant to a number of studies
using the contour integration task, but we mention just two here.

In our earlier study, we measured detection performance for line
segment contours embedded in line segment backgrounds (Geisler
et al., 2001; see also Tversky et al., 2004). Parametric data were
obtained for a number of embedded contour properties: contour
length, contour shape, and contour element orientation jitter
(orientation noise). Based on a somewhat different characterization
of the across-domain contour statistics described here, we proposed
a single-parameter model of performance in the contour integration
task. That model did not take into account the contrast polarity
dimension and used a less well-defined version of the ideal decision
rule for pair-wise contour element grouping (compare the current
eqn. (2) with eqns. (1) and (2) in Geisler et al., 2001). We have ge-
nerated predictions for the earlier contour integration task, using
the characterization of the contour statistics in Fig. 6 and the current
eqn. (2). Specifically, the model assumes that the observer first links
together all line segments in the display that satisfy eqn. (2), then
forms larger groups by transitive grouping (i.e., finds those groups
of line segments that are linked to each other either directly or
through unbroken links to other elements), and finally selects the
stimulus interval containing the longest group (for more details, see
Geisler et al., 2001). The version of this model observer that uses
both the likelihoods and the distant-dependent decision criterion
(Fig. 7b) performs poorly in the contour integration task, much
poorer than the human observers. However, the version of this model
that uses a fixed decision criterion of 1.0 (Fig. 7a) performs well in
the contour integration task, and its performance correlates well
with human observer performance (r = 0.88).

Geisler & Perry

This is a surprising result because in the contour integration task,
the prior probability of a pair of contour elements belonging to the
same contour falls rapidly with distance (as in natural scenes).
Apparently, ignoring the pair-wise priors that would be appropriate
for a simple contour occlusion task (with natural priors) yields an
effective heuristic for grouping extended contours. It is important to
note, however, that the true ideal observer for the contour integration
task is unknown, and thus, it is also unknown how close our model
observer approaches ideal performance. Also, in exploring the class
of contour integration models that have a fixed decision criterion
over distance, we discovered that it is possible to maintain nearly
equivalent good performance by trading off the radius over which
the initial pair-wise edge linking occurs with the value of the fixed
decision criterion—the larger the radius, the larger the value of the
decision criterion.

Field et al. (2000) conducted contour integration experiments
where the phase (contrast polarity) of the contour elements was
either maintained or alternated along the embedded contour. They
found that contour detection performance was substantially re-
duced when contrast polarity was alternated. Our measurements of
natural contour statistics show that when contrast polarity reverses,
a rational observer should apply a more stringent criterion for
integrating the contour elements. Although we have not derived
specific predictions for the Field et al. stimuli, we have shown that
applying a more stringent criterion (the left half of Fig. 7a) pro-
duces a substantial drop in contour integration performance. Thus,
their findings are at least qualitatively consistent with the hypoth-
esis that humans are basing their decisions on the average statistical
properties of natural contours.

Natural systems analysis

The study described in this article is representative of a new ap-
proach to perceptual neuroscience that has been emerging in re-
cent years. This approach, which might be termed “‘natural systems
analysis,” consists of several components. The first is to identify
and characterize a natural task or natural subtask that is performed
by the organism under natural conditions. In our case, this is the
contour occlusion task (Fig. 1). The second component is to measure
and analyze those specific environmental properties (natural scene
statistics) relevant for performing the task. Usually, these would be
across-domain statistics such as the pair-wise contour statistics
described in Fig. 6. The third component is a computational anal-
ysis to determine how a rational (ideal) perceptual system would
exploit the measured environmental properties to perform the
natural task. This component is critical because it provides insight
into the information contained in the natural stimuli and it can sug-
gest principled hypotheses for the neural mechanisms the organ-
ism might use to exploit that information. The fourth component is
to formulate specific hypotheses for neural mechanisms (based on
the first three components) and test them in physiological and/or
behavioral studies that capture the essence of the natural task. In our
case, the hypotheses were based on the optimal grouping rules
derived from the natural scene statistics (Fig. 7a), and the be-
havioral studies used a simplified contour occlusion task where the
stimuli were constructed directly from natural images (Fig. 4). The
study described here is unusual in that it involves all four
components of a natural systems analysis, but that is not particu-
larly important. What is important is the growing realization among
perception researchers that the perceptual systems must reflect the
tasks the organism performs and the statistical properties of the
stimuli it uses to perform those tasks. Studies that take this



Contour statistics in natural images

realization to heart are more likely to produce significant advances
in behavioral and systems neuroscience.
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Appendix

Here we show that the decision rule in eqn. (1) is equivalent to the
one in eqn. (2).

From the definition of conditional probability:
p(c=1ld,¢,0,p) _p
p(c=0ld,¢,0,p) p

p

p

c=1,d,¢,0,p)
¢c=0,d,9,0,p)
¢.0,plc =1,d)p(c =1|d)p(d)
.0, plc =0,d)p(c = 0|d)p(d)

= ==

and thus,
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It follows that
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if and only if
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