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Abstract: We present a general method for estimating defocus blur from first principles, given 
a set of natural scenes and properties of the vision system. Local, high-precision, signed 
estimates are obtained for a model human visual system.  
OCTS Codes: (100.0100) Image Processing; (110.0110) Imaging Systems; (330.0330) Vision, color, and visual optics 

 
1. Introduction 
Biological visual systems perform powerful computations that exploit information in retinal images useful 
to the perceptual, behavioral, and biological tasks that organisms perform. The information in retinal 
images is determined by the statistical structure of natural scenes, and by properties of the organism’s 
optical systems and photosensor arrays. Performance is jointly determined by the quality of the available 
information and by the efficiency with which that information is processed. To characterize the theoretical 
limits of performance in a natural task, one must account for all these factors [1]. The 3D structure of the 
environment is one of the most important environmental attributes that organisms estimate, given 
organisms’ needs to interact with the environment in their search for shelter, food, and mates. Defocus may 
be the most widely available depth cue in the animal kingdom. 

Vision begins with lens systems that focus and defocus light on the retinal photoreceptors. Lenses 
focus light perfectly from only one distance, and natural scenes contain objects at many distances. Thus, 
defocus is generally present in images of natural scenes. Although defocus degrades image quality, it plays 
an important role in depth estimation, accommodation control, eye growth regulation, and the predatory 
behavior of many small animals [2-5]. Defocus is also central to engineering and clinical eye-care 
applications (e.g. digital cameras, myopia prevention, refractive corrections, Lasik). Despite these facts, it 
is unknown how biological systems estimate defocus [4]. This is a significant theoretical gap. The 
computer vision and engineering literatures describe algorithms for defocus estimation. But they typically 
require simultaneous multiple images, special lens apertures, or light with known patterns projected onto 
the environment [6-8]. Mammalian visual systems usually lack these advantages. These algorithms 
therefore cannot serve as plausible models of defocus estimation in many biological visual systems. 
 Here, we describe a principled approach for estimating defocus in small regions of individual 
images, given a training set of natural images, a wave-optics model of the lens system, a photosensor array, 
and a specification of measurement noise. We show for the human visual system that high-precision, 
unbiased estimates are obtainable under natural viewing conditions, and that chromatic aberrations fully 
resolve the sign ambiguity. And we show that simple receptive fields, similar to those in retina and early 
visual cortex, suffice to extract the information optimally. The approach can be tailored to any 
environment-vision system pairing: natural or man-made, animal or machine. Thus, it establishes a 
framework, based on basic physical principles and established Bayesian statistics, for analyzing the 
psychophysics and neurophysiology of defocus estimation in species across the animal kingdom, and for 
creating optimal image-based defocus and depth estimation algorithms for computational vision systems. 
 
2. Methods & Results  
There are two broad steps in our approach to defocus estimation: i) characterize defocus information 
available for processing in the vision system of interest, ii) discover spatial frequency filters that are 
optimally diagnostic of defocus and use them to estimate defocus. The defocus of a target region is the 
difference between the lens system’s current power and the power required to focus the target region: 
ΔD = Dfocus − Dtarget  where ΔD  is the defocus, Dfocus  is the current power, and Dtarget  is the power required 
to image the target sharply (target distance), expressed in units of diopters (1/meters). The goal is to 
estimate ΔD  in each local region of an image. We start with a formal description of factors that determine 
the defocus information available for processing. Defocus information is jointly determined by the 
properties of natural scenes, the optical system, and the photosensor array of the vision system. 
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Fig. 1: Factors determining defocus information. a. Natural scenes. Natural scene inputs were approximated with well-focused 
photographs. The camera lens was focused on infinity and imaged objects were minimum 16m from the camera. b. Optics. L- and S-
cone retinal images for five different levels of defocus. Chromatic aberration causes the S-cone image to be less sharp than the L-cone 
image for myopic defocus and more sharp for hyperopic defocus. c. Sensor sampling. L- and S-cone sensor sampling is shown for an 
image with 0.5 diopters of defocus. Note the smaller number of S-cone samples. d. Neural noise and inefficiency. Radially-averaged 
amplitude spectra of the L- and S-cone images for an image with 0.5 diopters defocus. The dashed black curve shows the human 
neural detection threshold. The solid black line shows the threshold imposed on the algorithm. 

The input from a natural scene (Fig. 1a) is represented by an idealized (i.e. unaffected by optics) 
image,    I (x,λ) , which gives the radiance at each location x = (x, y)  in the plane of the sensor array for 
each wavelength λ . The optical system is represented by a point-spread function, 

   psf x,λ;a(z),W (z,λ,ΔD)( ) , which gives the spatial distribution of light across the sensor array produced 

by a point target of wavelength λ . The form of the point-spread function depends on the aperture function, 

   a(z) , which specifies the shape, size, and transmittance of the pupil aperture. It also depends on the 
wavefront aberration function, which depends on the position z in the plane of the aperture, the wavelength 
of light λ , and defocus. The aperture function determines the effect of diffraction on image quality. The 
wave aberration function determines degradations in image quality not attributable to diffraction (Fig. 1b). 
The sensor array is represented by a wavelength sensitivity function   sc

(λ)  and a spatial sampling function 
sampc (x)  for each sensor class, c (Fig. 1c). Neural noise and other processing inefficiencies are represented 
by a spatial-frequency-dependent detection threshold (Fig. 1d). Combining these factors (except for neural 
inefficiencies) gives the spatial responses in a given sensor class: 
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where  represents two-dimensional convolution in . The goal is to estimate defocus, ∆D, at each point 
in an image from local sensor responses (Equation 1) in the available sensor classes.  

We model a vision system with a 2mm pupil, human chromatic aberrations, sensors with the 
wavelength and spatial sampling of human long-wavelength (L) and short-wavelength (S) cones, and 
detection thresholds determined from human psychophysical data [9]. Thus, in this case, the defocus 
information is contained in the sensor responses, rL (x)  and rS (x) . To discover filters that are optimally 
diagnostic of defocus given the variation in natural images, we sampled hundreds of 1 deg patches from 
natural sensor images that had been defocused by different amounts (-2 to 2 diopters in ¼ diopter steps).  
Patches used for ‘training’ were not used for ‘testing’. Next, we performed a fast-Fourier transform to 
obtain their Fourier spectra. Then, we use a recently developed technique for dimensionality reduction—
Accuracy Maximization Analysis [10] (AMA)—to find the Bayes-optimal, rank-ordered, spatial-frequency 
defocus filters that, for a fixed number of filters, maximize defocus estimation accuracy in the least-squared 
sense over a given dioptric range. In this case, AMA operates on the radially-averaged power spectra of 
each sensor class (Fig 1d).  

The optimal defocus filters are similar to chromatic double-opponent cells in early visual cortex 
[11] (Fig. 2a). Also, the filters concentrate their energy near the frequency range known to drive human 
accommodation [12] (5-15 cpd). The final step is to use the filter responses to estimate defocus. To do this, 
we estimated the joint filter response distributions for each defocus level, p R | ΔDj( ) , by fitting Gaussians 
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to the sample means and covariances (Fig. 2b). Given a sufficient number of defocus levels, continuous 
estimates are obtained with the standard formula for minimum mean-squared error [13]: 

ΔD̂ = ΔDj p ΔDj | R( )
j =1

N∑ , where ΔDj  is one of N defocus levels and p ΔDj | R( )  is the posterior 

probability of that defocus level (by Bayes' rule) given the observed filter response vector, R.  
High-precision (+1/16 diopter), unbiased defocus estimates are obtainable from natural images in 

vision systems with human chromatic aberrations, L- and S-cone sensors, and typical human neural 
contrast detection thresholds (Fig. 2c). 

 
Fig. 2. Estimating defocus. a Optimal spatial-frequency defocus filters, b Filter responses and Gaussian fits to the filter response 
distributions. Different colors indicate different defocus levels. Training patches were used to determine the filters and the response 
distributions, c. Defocus estimates from test patches. Error bars show 68% (thick bars) and 90% (thin bars) confidence intervals on the 
estimates. Boxes indicate defocus levels that were not in the training set. The inset shows the pattern of L (red), M (green), and S 
(blue) cones in the rectangular mosaic that was used to sample the retinal images (57, 57, and 14 samples per deg, respectively). 
 
3. Conclusion  
Our work has at least four major benefits. First, it prescribes how to characterize the information in 
captured images relevant for estimating defocus, thus enabling the rigorous study of the perception, 
behavior, and neurophysiology of defocus estimation using natural stimuli. Second, it specifies how to 
determine the theoretical limits of performance by any biological or machine vision system given its 
constraints. Third, it determines the optimal filters (i.e. bases) for defocus estimation, which can in turn be 
used to make principled predictions about neurophysiological receptive fields involved in performing 
relevant computations. Fourth, it prescribes the design of algorithms that make optimal use of the available 
defocus information. In light of the recent trend in the machine vision community of taking algorithmic 
inspiration from biological science, this work may have broad practical applications.  
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