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A great challenge of systems neuroscience is to
understand the computations that underlie perceptual
constancies, the ability to represent behaviorally
relevant stimulus properties as constant even when
irrelevant stimulus properties vary. As signals proceed
through the visual system, neural states become more
selective for properties of the environment, and more
invariant to irrelevant features of the retinal images.
Here, we describe a method for determining the
computations that perform these transformations
optimally, and apply it to the specific computational task
of estimating a powerful depth cue: binocular disparity.
We simultaneously determine the optimal receptive field
population for encoding natural stereo images of locally
planar surfaces and the optimal nonlinear units for
decoding the population responses into estimates of
disparity. The optimal processing predicts well-
established properties of neurons in cortex. Estimation
performance parallels important aspects of human
performance. Thus, by analyzing the photoreceptor
responses to natural images, we provide a normative
account of the neurophysiology and psychophysics of
absolute disparity processing. Critically, the optimal
processing rules are not arbitrarily chosen to match the
properties of neurophysiological processing, nor are they
fit to match behavioral performance. Rather, they are
dictated by the task-relevant statistical properties of
complex natural stimuli. Our approach reveals how
selective invariant tuning—especially for properties not
trivially available in the retinal images—could be
implemented in neural systems to maximize
performance in particular tasks.

Introduction

Front-facing eyes evolved, at least in part, to support
binocular depth perception (Figure 1a). Stereopsis—
perceiving depth from disparity—is a perceptual
constancy that pervades the animal kingdom. In the

binocular zone, each eye’s view yields a slightly
different image of the scene. The local differences
between the retinal images—the binocular disparities—
are powerful signals for fixating the eyes and comput-
ing the depth structure of the scene. The critical step in
enabling the use of disparity in service of these tasks is
to estimate disparity itself. Once the disparities are
estimated, metric depth can be computed by triangu-
lation given the fixation of the eyes. There have been
many computational studies of disparity estimation
(Banks, Gepshtein, & Landy, 2004; Cormack, Steven-
son, & Schor, 1991; Marr & T. Poggio, 1976; Qian,
1997; Qian & Zhu, 1997; Read & Cumming, 2007;
Tyler & Julesz, 1978) and of the behavioral limits in
humans (Banks et al., 2004; Cormack et al., 1991; Marr
& T. Poggio, 1976; Ogle, 1952; Panum, 1858; Tyler &
Julesz, 1978). The underlying neural mechanisms of
disparity processing have also been extensively re-
searched (Cumming & DeAngelis, 2001; DeAngelis,
Ohzawa, & Freeman, 1991; Nienborg, Bridge, Parker,
& Cumming, 2004; Ohzawa, DeAngelis, & Freeman,
1990). However, there is no widely accepted ideal
observer theory of disparity estimation in natural
images. Such a theory would be a useful tool for
evaluating performance in disparity-related tasks,
providing principled hypotheses for neural mecha-
nisms, and developing practical applications.

Deriving the ideal observer for disparity estimation
is a hierarchical, multistep process (see Figure 2). The
first step is to model the photoreceptor responses to
stereo images of natural scenes. The second step is to
learn the optimal set of binocular filters for disparity
estimation from a large collection of natural images.
The third step is to determine how the optimal filter
responses should be combined to obtain units that are
selective for particular disparities and maximally
invariant to stimulus dimensions other than disparity
(e.g., texture). The fourth and final step is to read out
the population response to obtain the optimal disparity
estimates. In addition to carrying out these steps, we
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show how the optimal computations can be imple-
mented with well-understood cortical mechanisms.
Interestingly, the binocular receptive field properties of
cortical neurons, and human behavioral performance
in disparity-related tasks, parallel those of the optimal
estimator. The results help explain the exquisite ability
of the human visual system to recover the 3-D structure
of natural scenes from binocular disparity.

The computational approach employed here has
implications not just for understanding disparity
estimation, but for the more general problem of
understanding neural encoding and decoding in specific
tasks. Our approach merges and extends the two major
existing computational approaches for understanding
the neural encoding-decoding problem. The first
existing approach—efficient coding—focuses on how to
efficiently (compactly) represent natural sensory signals
in neural populations (Hoyer & Hyvärinen, 2000;
Lewicki, 2002; Li & Atick, 1994; Olshausen & Field,
1996; Simoncelli & Olshausen, 2001). While this
approach has provided general insights into retinal and
cortical encoding, its goal is to represent the sensory
signals without loss of information. Because it has a
different goal, it does not elucidate the encoding or the
decoding necessary for specific perceptual tasks. In a
certain sense, it provides no more insight into the
computations underlying specific perceptual abilities

than the photoreceptor responses themselves. The
second existing approach focuses on how to decode
populations of neurons tuned to the stimulus variable
associated with a specific perceptual task (Girshick,
Landy, & Simoncelli, 2011; Jazayeri & Movshon, 2006;
Ma, Beck, Latham, & Pouget, 2006; Read & Cumming,
2007). However, this approach focuses on response
variability that is intrinsic to the neural system rather
than response variability that is due to the natural
variation in the stimuli themselves. Specifically, this
approach assumes neurons that have perfectly invari-
ant tuning functions. These neurons give the same
response (except for neural noise) to all stimuli having
the same value of the variable of interest. In general,
this cannot occur under natural viewing conditions.
Variation in natural signals along irrelevant dimensions
inevitably causes variation in the tuning function. Thus,
this approach does not address how encoding affects
the neural encoding-decoding problem. It is critical to
consider natural sensory signals and task-specific
encoding and decoding simultaneously, because en-
coded signals relevant for one task may be irrelevant
for another, and because task-specific decoding must
discount irrelevant variation in the encoded signals.

Arguably, the most significant advances in behav-
ioral and systems neuroscience have resulted from the
study of neural populations associated with particular

Figure 1. Natural scene inputs, disparity geometry, and example left and right eye signals. (a) Animals with front facing eyes. (b)

Example natural images used in the analysis. (c) Stereo geometry. The eyes are fixated and focused at a point straight ahead at 40 cm.

We considered retinal disparity patterns corresponding to fronto-parallel and slanted surfaces. Non-planar surfaces were also

considered (see Discussion). (d) Photographs of natural scenes are texture mapped onto planar fronto-parallel or slanted surfaces.

Here, the left and right eye retinal images are perspective projections (inset) of a fronto-parallel surface with 5 arcmin of uncrossed

disparity. Left and right eye signals are obtained by vertically averaging each image; these are the signals available to neurons with

vertically oriented receptive fields. The signals are not identical shifted copies of each other because of perspective projection, added

noise, and cosine windowing (see text). We note that across image patches there is considerable signal variation due to stimulus

properties (e.g., texture) unrelated to disparity. A selective, invariant neural population must be insensitive to this variation.
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sensory and perceptual tasks. Here, we describe an
approach for determining the encoding and decoding
of natural sensory stimuli required for optimal
performance in specific tasks, and show that well-
established cortical mechanisms can implement the

optimal computations. Our results provide principled,
testable hypotheses about the processing stages that
give rise to the selective, invariant neural populations
that are thought to underlie sensory and perceptual
constancies.

Methods and results

Natural disparity signals

The first step in deriving the ideal observer for
disparity estimation is to simulate the photoreceptor
responses to natural scenes (see Figure 2a). The vector
of photoreceptor responses, r (see Figure 2a), is
determined by the luminance (Figure 1b) and depth
structure of natural scenes, projective viewing geome-
try, and the optics, sensors, and noise in the vision
system. We model each of these factors for the human
visual system (see Methods details). We generate a large
number of noisy, sampled, stereo-images of small (18 ·
18), fronto-parallel surface patches for each of a large
number of disparity levels within Panum’s fusional
range (Panum, 1858) (�16.875 to 16.875 arcmin in
1.875 arcmin steps). This range covers approximately
80% of disparities that occur at or near the fovea in
natural viewing (Liu, Bovik, & Cormack, 2008), and
these image patches represent the information available
to the vision system for processing. Although we focus
first on fronto-parallel patches, we later show that the
results are robust to surface slant and are likely to be
robust to other depth variations occurring in natural
scenes. We emphasize that in this paper we simulate
retinal images by projecting natural image patches onto
planar surfaces (Figure 1c), rather than simulating
retinal images from stereo photographs. Later, we
evaluate the effects of this simplification (see Discus-
sion).

The binocular disparity in the images entering the
two eyes is given by

d ¼ aL � aR; ð1Þ
where aL and aR are the angles between the retinal
projections of a target and fixation point in the left and
right eyes. This is the definition of absolute retinal
disparity. The specific pattern of binocular disparities
depends on the distance between the eyes, the distance
and direction that the eyes are fixated, and the distance
and depth structure of the surfaces in the scene. We
consider a viewing situation in which the eyes are
separated by 6.5 cm (a typical interocular separation)
and are fixated on a point 40 cm straight ahead (a
typical arm’s length) (Figure 1c).

Figure 2. Hierarchical processing steps in optimal disparity

estimation. (a) The photoreceptor responses are computed for

each of many natural images, for each of many different

disparities. (b) The optimal filters for disparity estimation are

learned from this collection of photoreceptor responses to

natural stimuli. These are the eight most useful vertically

oriented filters (receptive fields) (see also Figure 3a). Left and

right eye filter weights are shown in gray. Filter responses are

given by the dot product between the photoreceptor responses

and filter weights. (c) The optimal selective, invariant units are

constructed from the filter responses. Each unit in the

population is tuned to a particular disparity. These units result

from a unique combination of the optimal filter responses (see

also Figure 7). (d) The optimal readout of the selective, invariant

population response is determined. Each black dot shows the

response of one of the disparity-tuned units in (c) to the

particular image shown in (a). The peak of the population

response is the optimal (MAP) estimate. Note that r, R, and RLL

are vectors representing the photoreceptor, filter, and disparity-

tuned-unit population responses to particular stimuli. Red

outlines represent the responses to the particular stereo-image

patch in (a). The steps in this procedure are general, and will be

useful for developing ideal observers for other estimation tasks.
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Optimal linear binocular filters

Estimating disparity (solving the correspondence
problem) is difficult because there often are multiple
points in one eye’s image that match a single point in
the other (Marr & T. Poggio, 1976). Therefore,
accurate estimation requires using the local image
region around each point to eliminate false matches. In
mammals, neurons with binocular receptive fields that
weight and sum over local image regions first appear in
primary visual cortex. Much is known about these
neurons. It is not known, however, why they have the
specific receptive fields they do, nor is it known how
their responses are combined for the task of estimating
disparity.

To discover the linear binocular filters that are
optimal this task (see Figure 2b), we use a Bayesian
statistical technique for dimensionality reduction called
accuracy maximization analysis (AMA) (Geisler, Na-
jemnik, & Ing 2009). The method depends both on the
statistical structure of the sensory signals and on the
task to be solved. This feature of the method is
critically important because information relevant for
one task may be irrelevant for another. For any fixed
number of filters (feature dimensions), AMA returns
the linear filters that maximize accuracy for the specific
computational task at hand (see Methods details).
(Note that feature dimensions identified with other
dimensionality-reduction techniques like PCA and ICA
may be irrelevant for a given task.) Importantly, AMA
makes no a priori assumptions about the shapes of the
filters (e.g., there no requirement that they be orthog-
onal). We applied AMA to the task of identifying the
disparity level, from a discrete set of levels, in a random
collection of retinal stereo images of natural scenes.
The number of disparity levels was sufficient to allow
continuous disparity estimation from�15 to 15 arcmin
(see Methods details).

Before applying AMA, we perform a few additional
transformations consistent with the image processing
known to occur early in the primate visual system
(Burge & Geisler, 2011). First, each eye’s noisy sampled
image patch is converted from a luminance image to a
windowed contrast image c(x) by subtracting off and
dividing by the mean and then multiplying by a raised
cosine of 0.58 at half height. The window limits the
maximum possible size of the binocular filters; it places
no restriction on minimum size. The size of the cosine
window approximately matches the largest V1 binoc-
ular receptive field sizes near the fovea (Nienborg et al.,
2004). Next, each eye’s sampled image patch is
averaged vertically to obtain what are henceforth
referred to as left and right eye signals. Vertical
averaging is tantamount to considering only vertically
oriented filters, for this is the operation that vertically
oriented filters perform on images. All orientations can

provide information about binocular disparity (Chen &
Qian, 2004; DeAngelis et al., 1991); however, because
canonical disparity receptive fields are vertically ori-
ented, we focus our analysis on them. An example
stereo pair and corresponding left and right eye signals
are shown in Figure 1d. Finally, the signals are contrast
normalized to a vector magnitude of 1.0: cnorm(x) ¼
c(x)/||c(x)||. This normalization is a simplified version
of the contrast normalization seen in cortical neurons
(Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982;
Heeger, 1992) (see Supplement). Seventy-six hundred
normalized left and right eye signals (400 Natural
Inputs · 19 Disparity Levels) constituted the training
set for AMA.

The eight most useful linear binocular filters (in rank
order) are shown in Figure 3a. These filters specify the
subspace that a population of neurophysiological
receptive fields should cover for maximally accurate
disparity estimation. Some filters are excited by
nonzero disparities, some are excited by zero (or near-
zero) disparities, and still others are suppressed by zero
disparity. The left and right eye filter components are
approximately log-Gabor (Gaussian on a log spatial
frequency axis). The spatial frequency selectivity of
each filter’s left and right eye components are similar,
but differ between filters (Figure 3b). Filter tuning and
bandwidth range between 1.2–4.7 c/8 and 0.9–4.2 c/8,
respectively, with an average bandwidth of approxi-
mately 1.5 octaves. Thus, the spatial extent of the filters
(see Figure 3a) is inversely related to its spatial
frequency tuning: As the tuned frequency increases, the
spatial extent of the filter decreases. The filters also
exhibit a mixture of phase and position coding (Figure
3c), suggesting that a mixture of phase and position
coding is optimal. Similar filters result (Figure S1a–c)
when the training set contains surfaces having a
distribution of different slants (see Discussion). (Note
that the cosine windows bias the filters more toward
phase than position encoding. Additional analyses have
nevertheless shown that windows having a nonzero
position offset, i.e., position disparity, do not qualita-
tively change the filters.)

Interestingly, some filters provide the most infor-
mation about disparity when they are not responding.
For example, the disparity is overwhelmingly likely to
be zero when filter f5 (see Figure 3, Supplementary
Figure S5) does not respond because anticorrelated
intensity patterns in the left- and right-eye images are
very unlikely in natural images. A complex cell with
this binocular receptive field would produce a disparity
tuning curve similar to the tuning curve produced by a
classic tuned-inhibitory cell (Figure S5; Poggio, Gon-
zalez, Krause, 1988).

The properties of our linear filters are similar to
those of binocular simple cells in early visual cortex
(Cumming & DeAngelis, 2001; De Valois, Albrecht, &
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Thorell, 1982; DeAngelis et al., 1991; Poggio et al.,
1988). Specifically, binocular simple cells have a
similar range of shapes, a similar range of spatial
frequency tuning, similar octave bandwidths of 1.5,
and similar distributions of phase and position coding
(Figure 3c). Despite the similarities between the
optimal filters and receptive fields in primary visual
cortex, we emphasize that our explicit aim is not to
account for the properties of neurophysiological
receptive fields (Olshausen & Field, 1996). Rather, our
aim is to determine the filters that encode the retinal
information most useful for estimating disparity in
natural images. Thus, neurophysiological receptive
fields with the properties described here would be
ideally suited for disparity estimation.

The fact that many neurophysiological properties of
binocular neurons are predicted by a task-driven
analysis of natural signals, with appropriate biological
constraints and zero free parameters, suggests that
similar ideal observer analyses may be useful for
understanding and evaluating the neural underpin-
nings of other fundamental sensory and perceptual
abilities.

Optimal disparity estimation

The optimal linear binocular filters encode the most
relevant information in the retinal images for disparity
estimation. However, optimal estimation performance
can only be reached if the joint responses of the filters
are appropriately combined and decoded (Figure 2c, d).
Here, we determine the Bayes optimal (nonlinear)
decoder by analyzing the responses of the filters in
Figure 3 to natural images with a wide range of
disparities. Later, we show how this decoder could be
implemented with linear and nonlinear mechanisms
commonly observed in early visual cortex. (We note
that the decoder that was used to learn the AMA filters
from the training stimuli cannot be used for arbitrary
stimuli; see Methods details.)

First, we examine the joint distribution of filter
responses to the training stimuli, conditioned on each
disparity level dk. (The dot product between each filter
and a contrast normalized left- and right-eye signal
gives each filter’s response. The filter responses are
represented by the vector R; see Figure 2b.) The
conditional response distributions p(Rjdk) are approx-
imately Gaussian (83% of the marginal distributions
conditioned on disparity are indistinguishable from
Gaussian; K-S test, p . 0.01, see Figure 4a). (The
approximately Gaussian form is largely due to the
contrast normalization of the training stimuli; see
Discussion.) Each of these distributions was fit with a
multidimensional Gaussian gauss(R; uk, Ck) estimated
from the sample mean vector ûk and the sample

covariance matrix Ĉk. Figure 4a shows sample filter
response distributions (conditioned on several disparity
levels) for the first two AMA filters. Much of the
information about disparity is contained in the
covariance between the filter responses, indicating that
a nonlinear decoder is required for optimal perfor-
mance.

The posterior probability of each disparity given an
observed response vector of AMA filter responses R,
can be obtained via Bayes’ rule:

pðdkjRÞ ¼
gaussðR;uk;CkÞpðdkÞXN
l¼1

gaussðR; ul;ClÞpðdlÞ
: ð2Þ

Here, we assume that all disparities are equally
likely. Hence, the prior probabilities p(d) cancel out.
(This assumption yields a lower bound on performance;
performance will increase somewhat in natural condi-
tions when the prior probabilities are not flat, a
scenario that is considered later.)

The solid curves in Figure 4b show posterior
probability distributions averaged across all natural
stimuli having the same disparity. Each posterior can
be conceptualized as the expected response of a
population of (exponentiated) log-likelihood neurons
(see below), ordered by their preferred disparities.
Colored areas show variation in the posterior proba-
bilities due to irrelevant image variation. When the goal
is to obtain the most probable disparity, the optimal
estimate is given by the maximum a posteriori (MAP)
read-out rule

d̂ ¼ argmax
d

pðdjRÞ: ð3Þ

The posterior distributions given by Equation 2
could of course also be read out with other decoding
rules, which would be optimal given different goals
(cost functions).

The accuracy of disparity estimates from a large
collection of natural stereo-image test patches (29,600
Test Patches: 800 Natural Inputs · 37 Disparity
Levels) is shown in Figure 5a. (Note: None of the test
patches were in the training set, and only half the test
disparity levels were in the training set.) Disparity
estimates are unbiased over a wide range. At zero
disparity, estimate precision corresponds to a detection
threshold of ; 6 arcsec. As disparity increases (i.e., as
the surface patch is displaced from the point of
fixation) precision decreases approximately exponen-
tially with disparity (Figure 5b). Sign confusions are
rare (3.7%, Figure 5c). Similar, but somewhat poorer,
performance is obtained with surfaces having a cosine
distribution of slants (Figures 5d, e, Figure S1f, see
Discussion). In summary, optimal encoding (filters in
Figure 3) and decoding (Equations 2 and 3) of task-

Journal of Vision (2014) 14(2):1, 1–18 Burge & Geisler 5

http://www.journalofvision.org/content/14/2/1/suppl/DC1


relevant information in natural images yields excellent
disparity estimation performance.

This pattern of performance is consistent with
human performance: Human disparity detection
thresholds are exquisite, a few arcsec on average
(Blakemore, 1970; Cormack et al., 1991); discrimina-
tion thresholds decrease exponentially with disparity
(Badcock & Schor, 1985; Blakemore, 1970; McKee,
Levi, & Bowne, 1990; Stevenson, Cormack, Schor, &
Tyler, 1992); and sign confusions occur with a similar
pattern and a similar proportion of the time (Landers &
Cormack, 1997).

Most psychophysical and neurophysiological data
has been collected with artificial stimuli, usually
random-dot stereograms (RDSs). We asked how well
our optimal estimator performs on RDS stimuli. Given
that our estimator was trained on natural stimuli, it is
interesting to note that performance is very similar (but
slightly poorer) with RDSs (Figure S2a–e). Fortunate-
ly, this finding suggests that under many circumstances
RDS stimuli are reasonable surrogates for natural
stimuli, when measuring disparity processing in bio-
logical vision systems.

Our optimal estimator also performs poorly on
anticorrelated stimuli (e.g., stimuli in which one eye’s
image is contrast reversed), just like humans (Cum-
ming, Shapiro, & Parker, 1998). Relevant information
exists in the optimal filter responses to anticorrelated
stimuli, although the conditional response distributions
are more poorly segregated and the responses are
generally slightly weaker (Figure S2f, g). The primary
reason for poor performance is that an optimal
estimator trained on natural images cannot accurately
decode the filter responses to anticorrelated stimuli
(Figure S2h, i). This fact may help explain why
binocular neurons often respond strongly to anticor-
related stereograms, and why anticorrelated stereo-

grams appear like ill-specified volumes of points in
depth.

Optimal disparity encoding and decoding with
neural populations

Although the AMA filters appear similar to binoc-
ular simple cells (Figure 3, Figure S1), it may not be
obvious how the optimal Bayesian rule for combining
their responses is related to processing in visual cortex.
Here, we show that the optimal computations can be
implemented with neurally plausible operations—linear
excitation, linear inhibition, and simple static non-
linearities (thresholding and squaring). Appropriate
weighted summation of binocular simple and complex
cell population responses can result in a new popula-
tion of neurons having tightly tuned, unimodal
disparity tuning curves that are largely invariant (see
Figure 2c).

The key step in implementing a Bayes-optimal
estimation rule is to compute the likelihood—or
equivalently the log likelihood—of the optimal filter
responses, conditioned on each disparity level. For the
present case of a uniform prior, the optimal MAP
estimate is simply the disparity with the greatest log
likelihood. Given that the likelihoods are Gaussian, the
log likelihoods are quadratic:

ln gaussðRjdkÞ½ � ¼ �0:5ðR� ukÞTC�1
k ðR� ukÞ

þ const; ð4Þ
where uk and Ck, which are the mean and covariance
matrices of the AMA filter responses to a large
collection of natural stereo-image patches having
disparity dk (see Figure 4a). By multiplying through
and collecting terms, Equation 4 can be expressed as

Figure 3. Optimal linear binocular receptive fields for disparity estimation. (a) Spatial receptive fields. Solid lines with closed symbols

indicate the left eye filter components. Dashed lines with open symbols indicate right eye filter components. Insets show 2-D versions

of the 1-D filters. (b) Luminance spatial frequency tuning versus spatial frequency bandwidth. The filters have bandwidths of

approximately 1.5 octaves. (c) Phase and position shift coding for optimal binocular filters (circles) and binocular cells in macaque

(squares) (Cumming & DeAngelis, 2001). Phase shifts are expressed in equivalent position shifts. Note that the filters were optimized

for the fovea, whereas macaque cells were recorded from a range of different eccentricities.
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ln gaussðRjdkÞ½ � ¼
Xn
i¼1

wikRi þ
Xn
i¼1

wiikR
2
i

þ
Xn�1

i¼1

Xn
j¼iþ1

wijkðRi þ RjÞ2

þ const0; ð5Þ
where Ri is the response of the ith AMA filter, and wik,
wiik, and wijk are the weights for disparity dk. The
weights are simple functions of the mean and covari-
ance matrices from Equation 4 (see Supplement). Thus,
a neuron which responds according to the log
likelihood of a given disparity (an LL neuron)—that is,
RLL

k ¼ ln[gauss(Rjdk)]—can be obtained by weighted
summation of the linear (first term), squared (second
term), and pairwise-sum-squared (third term) AMA
filter responses (Equation 5). The implication is that a
large collection of LL neurons, each with a different
preferred disparity, can be constructed from a small,
fixed set of linear filters simply by changing the weights
on the linear filter responses, squared-filter responses,
and pairwise-sum-squared filter responses.

A potential concern is that these computations could
not be implemented in cortex. AMA filters are strictly
linear and produce positive and negative responses
(Figure 6a), whereas real cortical neurons produce only
positive responses. However, the response of each
AMA filter could be obtained by subtracting the
outputs of two half-wave rectified simple cells that are
‘‘on’’ and ‘‘off’’ versions of each AMA filter (see
Supplement, Figure S3a). The squared and pairwise-

sum-squared responses are modeled as resulting from a
linear filter followed by a static squaring nonlinearity
(Figure 6b); these responses could be obtained from
cortical binocular complex cells (see Supplement).
(Note that our ‘‘complex cell’’ differs from the
definition given by some prominent expositors of the
disparity energy model, [Figure 6d], Cumming &
DeAngelis, 2001; Ohzawa, 1998; Qian, 1997.) The
squared responses could be obtained by summing and
squaring the responses of on and off simple cells (see
Supplement, Figure S3a, b). Finally, the LL neuron
response could be obtained via a weighted sum of the
AMA filter and model complex cell responses (Figure
6c). Thus, all the optimal computations are biologically
plausible.

Figure 6 shows processing schematics, disparity
tuning curves, and response variability for the three
filter types implied by our analysis: an AMA filter, a
model complex cell, a model LL neuron, and, for
comparison, a standard disparity energy neuron
(Cumming & DeAngelis, 2001). (The model complex
cells are labeled ‘‘complex’’ because in general they
exhibit temporal frequency doubling and a fundamen-
tal to mean response ratio that is less than 1.0, Skottun
et al., 1991.) Response variability due to retinal image
features that are irrelevant for estimating disparity is
indicated by the gray area; the smaller the gray area,
the more invariant the neural response to irrelevant
image features. The AMA filter is poorly tuned to
disparity and gives highly variable responses to
different stereo-image patches with the same disparity

Figure 4. Joint filter response distributions conditioned on disparity for filters F1 and F2 (see Figure 3a). (a) Joint filter responses to

each of the 7,600 image patches in the training set. Different colors and symbols denote different disparity levels. Contours show

Gaussian fits to the conditional filter response distributions. The black curves on the x and y axes represent the marginal response

distributions, p(R1) and p(R2). (b) Posterior probability distributions, averaged across all stimuli at each disparity level if only filters F1

and F2 are used (dotted curves), and if all eight filter responses are used (solid curves). Using eight AMA filters instead of two

increases disparity selectivity. Shaded areas represent 68% confidence intervals on the posterior probabilities; this variation is due to

natural stimulus variation that is irrelevant for estimating disparity. Natural stimulus variation thus creates response variability even in

hypothetical populations of noiseless neurons.
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(Figure 6a). The model complex cell is better tuned, but
it is not unimodal and its responses also vary severely
with irrelevant image information (Figure 6b). (The
disparity tuning curves for all model complex cells are
shown in Figure S5.) In contrast, the LL neuron is
sharply tuned, is effectively unimodal, and is strongly
response invariant (Figure 6c). That is, it responds
similarly to all natural image patches of a given
disparity. The disparity tuning curves for a range of LL
neurons are shown in Figure 7a. When slant varies,
similar but broader LL neuron tuning curves result
(Figure S1d, e).

These results show that it is potentially misleading to
refer to canonical V1 binocular simple and complex
cells as disparity tuned because their responses are
typically as strongly modulated by variations in
contrast pattern as they are by variations in disparity
(gray area, Figure 6a, b). The LL neurons, on the other
hand, are tuned to a narrow range of disparities, and
respond largely independent of the spatial frequency
content and contrast.

The LL neurons have several interesting properties.
First, their responses are determined almost exclusively
by the model complex cell inputs because the weights
on the linear responses (Equation 5, Figure 6a, c) are
generally near zero (see Supplement). In this regard, the
LL neurons are consistent with the predictions of the
standard disparity energy model (Cumming & DeAn-
gelis, 2001; Ohzawa, 1998). However, standard dis-

parity energy neurons are not as narrowly tuned or as
invariant (Figure 6d).

Second, each LL neuron receives strong inputs from
multiple complex cells (Figure 7b). In this regard, the
LL neurons are inconsistent with the disparity energy
model, which proposes that disparity-tuned cells are
constructed from two binocular subunits. The potential
value of more than two subunits has been previously
demonstrated (Qian & Zhu, 1997). Recently, it has
been shown that some disparity-tuned V1 cells are
often modulated by a greater number of binocular
subunits than two. Indeed, as many as 14 subunits can
drive the activity of a single disparity selective cell
(Tanabe, Haefner, & Cumming, 2011).

Third, the weights on the model complex cells
(Figure 7b)—which are determined by the conditional
response distributions (Figure 4a)—specify how infor-
mation at different spatial frequencies should be
combined.

Fourth, as preferred disparity increases, the number
of strong weights on the complex cell inputs decreases
(Figure 7b). This occurs because high spatial frequen-
cies are less useful for encoding large disparities (see
below). Thus, if cells exist in cortex that behave
similarly to LL neurons, the number and spatial
frequency tuning of binocular subunits driving their
response should decrease as a function of their
preferred disparity.

Fifth, for all preferred disparities, the excitatory
(positive) and inhibitory (negative) weights are in a

Figure 5. Accuracy and precision of disparity estimates on test patches. (a) Disparity estimates of fronto-parallel surfaces displaced

from fixation using the filters in Figure 3. Symbols represent the median MAP readout of posterior probability distributions (see

Figure 4b). Error bars represent 68% confidence intervals on the estimates. Red boxes mark disparity levels not in the training set.

Error bars at untrained levels are no larger than at the trained levels, indicating that the algorithm makes continuous estimates. (b)

Precision of disparity estimates on a semilog axis. Symbols represent 68% confidence intervals (same data as error bars in Figure 5a).

Human discrimination thresholds also rise exponentially as stereo stimuli are moved off the plane of fixation. The gray area shows the

hyperacuity region. (c) Sign identification performance as a function of disparity. (d), (e) Same as in (b), (c), except that data is for

surfaces with a cosine distribution of slants.
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classic push-pull relationship (Ferster & Miller, 2000)
(Figure 7b), consistent with the fact that disparity
selective neurons in visual cortex contain both excit-
atory and suppressive subunits (Tanabe et al., 2011).

Sixth, the LL neuron disparity tuning curves are
approximately log-Gaussian in shape (i.e., Gaussian on
a log-disparity axis). Because their standard deviations
are approximately constant on a log disparity axis,
their disparity bandwidths increase linearly with the
preferred disparity (Figure 7c). In this respect, many

cortical neurons behave like LL neurons; the disparity
tuning functions of cortical neurons typically have
more low frequency power than is predicted from the
standard energy model (Ohzawa, DeAngelis, & Free-
man, 1997; Read & Cumming, 2003). Additionally,
psychophysically estimated disparity channels in hu-
mans exhibit a similar relationship between bandwidth
and preferred disparity (Stevenson et al., 1992). Human
disparity channels, however, differ in that they have
inhibitory side-lobes (Stevenson et al., 1992); that is,

Figure 6. Biologically plausible implementation of selective, invariant tuning: processing schematics and disparity tuning curves for an

AMA filter, a model complex cell, and a model log-likelihood (LL) neuron. For comparison, a disparity energy unit is also presented. In

all cases, the inputs are contrast normalized photoreceptor responses. Disparity tuning curves show the mean response of each filter

type across many natural image patches having the same disparity, for many different disparities. Shaded areas show response

variation due to variation in irrelevant features in the natural patches (not neural noise). Selectivity for disparity and invariance to

irrelevant features (external variation) increase as processing proceeds. (a) The filter response is obtained by linearly filtering the

contrast normalized input signal with the AMA filter. (b) The model complex cell response is obtained by squaring the linear AMA

filter response. (c) The response of an LL neuron, with preferred disparity dk, is obtained by a weighted sum of linear and squared

filter responses. The weights can be positive/excitatory or negative/inhibitory (see Figure 7). The weights for an LL neuron with a

particular preferred disparity are specified by the filter response distribution to natural images having that disparity (Figure 4a,

Equations 4, 5, S1– 4). In disparity estimation, the filter responses specify that the weights on the linear filter responses are near zero

(see Supplement). (d) A standard disparity energy unit is obtained by simply summing the squared responses of two binocular linear

filters that are in quadrature (908 out of phase with each other). Here, we show the tuning curve of a disparity energy unit having

binocular linear filters (subunits) with left and right-eye components that are also 908 out of phase with each other (i.e., each

binocular subunit is selective for a nonzero disparity).

Journal of Vision (2014) 14(2):1, 1–18 Burge & Geisler 9

http://www.journalofvision.org/content/14/2/1/suppl/DC1
http://www.journalofvision.org/content/14/2/1/suppl/DC1
http://www.journalofvision.org/content/14/2/1/suppl/DC1


they have the center-surround organization that is a
hallmark of retinal ganglion cell, LGN, and V1
receptive fields. Understanding the basis of this center-
surround organization is an important direction for
future work.

V1 binocular neurons are unlikely to have receptive
fields exactly matching those of the simple and complex
cells implied by the optimal AMA filters, but V1
neurons are likely to span the subspace spanned by the
optimal filters. It is thus plausible that excitatory and
inhibitory synaptic weights could develop so that a
subset of the neurons in V1, or in other cortical areas,
signal the log likelihood of different specific disparities
(see Figure 7b). Indeed, some cells in cortical areas V1,
V2, and V3/V3a exhibit sharp tuning to the disparity of
random dot stimuli (Cumming, 2002; Ohzawa et al.,
1997; G. F. Poggio et al., 1988; Read & Cumming,
2003).

Computational models of estimation from neural
populations often rely on the assumption that each
neuron is invariant and unimodally tuned to the
stimulus property of interest (Girshick et al., 2011;
Jazayeri & Movshon, 2006; Lehky & Sejnowski, 1990;
Ma et al., 2006). However, it is often not discussed how
invariant unimodal tuning arises. For example, the
binocular neurons (i.e., complex cells) predicted by the
standard disparity energy model do not generally
exhibit invariant unimodal tuning (Figure 6d). Our
analysis shows that neurons with unimodal tuning to
stimulus properties not trivially available in the retinal

images (e.g., disparity) can result from appropriate
linear combination of nonlinear filter responses.

To obtain optimal disparity estimates, the LL
neuron population response (represented by the vector
RLL in Figure 2c) must be read out (see Figure 2d).
The optimal read-out rule depends on the observer’s
goal (the cost function). A common goal is to pick the
disparity having the maximum a posteriori probabil-
ity. If the prior probability of the different possible
disparities is uniform, then the optimal MAP decoding
rule reduces to finding the LL neuron with the
maximum response. Nonuniform prior probabilities
can be taken into account by adding a disparity-
dependent constant to each LL neuron response
before finding the peak response. There are elegant
proposals for how the peak of a population response
can be computed in noisy neural systems (Jazayeri &
Movshon, 2006; Ma et al., 2006). Other commonly
assumed cost functions (e.g., MMSE) yield similar
performance.

In sum, our analysis has several implications. First, it
suggests that optimal disparity estimation is best
understood in the context of a population code.
Second, it shows how to linearly sum nonlinear neural
responses to construct cells with invariant unimodal
tuning curves. Third, it suggests that the eclectic
mixture of binocular receptive field properties in cortex
may play a functional role in disparity estimation.
Fourth, it provides a principled hypothesis for how
neurons may compute the posterior probabilities of

Figure 7. Constructing selective, invariant disparity-tuned units (LL neurons). (a) Tuning curves for several LL neurons, each with a

different preferred disparity. Each point on the tuning curve represents the average response across a collection of natural stereo-

images having the same disparity. Gray areas indicate 61 SD of response due to stimulus-induced response variability. (b)

Normalized weights on model complex cell responses (see Supplement, Equation 5, Figure 6c) for constructing the five LL neurons

marked with arrows in (a). Positive weights are excitatory (red). Negative weights are inhibitory (blue). On-diagonal weights

correspond to model complex cells having linear receptive fields like the filters in Figure 3a. Off-diagonal weights correspond to model

complex cells having linear receptive fields like the scaled pairwise sums of the AMA filters (see Figures S3–S5). High spatial

frequencies are not useful for estimating large disparities (Figure S7). Thus, the number of strongly weighted complex cells decreases

as the magnitude of the preferred disparity increases from zero. (c) LL neuron bandwidth (i.e., full-width at half-height of disparity

tuning curves) as a function of preferred disparity. Bandwidth increases approximately linearly with tuning.
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stimulus properties (e.g., disparity, defocus, motion)
not trivially available in the retinal image(s). Thus, our
analysis provides a recipe for how to increase selectivity
and invariance in the visual processing stream: invari-
ance to image content variability and selectivity for the
stimulus property of interest.

Discussion

Using principles of Bayesian statistical decision
theory, we showed how to optimally estimate binoc-
ular disparity in natural stereo images, given the
optical, sensor, and noise properties of the human
visual system. First, we determined the linear binoc-
ular filters that encode the retinal image information
most useful for estimating disparity in natural stereo-
images. The optimal linear filters share many proper-
ties with binocular simple cells in the primary visual
cortex of monkeys and cats (Figure 3, Figure S1).
Then, we determined how the optimal linear filter
responses should be nonlinearly decoded to maximize
the accuracy of disparity estimation. The optimal
decoder was not based on prior assumptions, but
rather was dictated by the statistical pattern of the
joint filter responses to natural stereo images. Overall
performance was excellent and matched important
aspects of human performance (Figure 5). Finally, we
showed that the optimal encoder and decoder can be
implemented with well-established neural operations.
The operations show how selectivity and invariance
can emerge along the visual processing stream
(Figures 6 & 7).

External variability and neural noise

A visual system’s performance is limited by both
external (stimulus-induced) variability and intrinsic
neural response variability (i.e., neural noise). Many
theoretical studies have focused on the impact of
neural noise on neural computation (Berens, Ecker,
Gerwinn, Tolias, & Bethge, 2011; Cumming &
DeAngelis, 2001; DeAngelis et al., 1991; Jazayeri &
Movshon, 2006; Ma et al., 2006; Nienborg et al., 2004;
Ohzawa, DeAngelis, & Freeman, 1990). However, in
many real-world situations, stimulus-induced response
variability (i.e., variability due to nuisance stimulus
properties) is a major or the dominant source of
variability. Our analysis demonstrates that the exter-
nal variation in natural image content—that is,
variation in image features irrelevant to the task—
constitutes an important source of response variability
in disparity estimation (see Figures 4, 5, 7). Thus, even
in a hypothetical visual system composed of noiseless

neurons, significant response variability will occur
when estimating disparity under natural conditions
(see Figures 4 and 5).

Determining the best performance possible without
neural noise is essential for understanding the effect of
neural noise (Haefner & Bethge, 2010; Lewicki, 2002;
Li & Atick, 1994; Olshausen & Field, 1996; Simoncelli
& Olshausen, 2001), because it sets bounds on the
amount of neural noise that a system can tolerate,
before performance significantly deteriorates. Indeed,
the impact of neural noise on encoding and decoding in
natural viewing cannot be evaluated without consider-
ing the impact of stimulus-induced response variability
on the population response (see Supplement).

Seventy years ago, Hecht, Shlaer, and Pirenne (1942)
showed in a landmark study that dark-adapted humans
can detect light in the periphery from the absorption of
only five to eight quanta, and that external variability
(in the form of photon noise) was the primary source of
variability in human performance. This result contra-
dicted the notion (widespread at the time) that response
variability is due primarily to variability within the
organism (e.g., intrinsic noise). Similarly, our results
underscore the importance of analyzing the variability
of natural signals, when analyzing the response
variability of neural circuits that underlie performance
in critical behavioral tasks.

Comparison with the disparity energy model

The most common neurophysiological model of
disparity processing is the disparity energy model,
which aims to account for the response properties of
binocular complex cells (Cumming & DeAngelis, 2001;
DeAngelis et al., 1991; Ohzawa, 1998; Ohzawa et al.,
1990). The model had remarkable initial success.
However, an increasing number of discrepancies have
emerged between the neurophysiology and the model’s
predictions. The standard disparity energy model, for
example, does not predict the reduced response to
anticorrelated stereograms observed in cortex. It also
does not predict the dependence of disparity selective
cells on more than two binocular subunits. Fixes to the
standard model have been proposed to account for the
observed binocular response properties (Haefner &
Cumming, 2008; Qian & Zhu, 1997; Read, Parker, &
Cumming, 2002; Tanabe & Cumming, 2008). We have
shown, however, that a number of these properties are
a natural consequence of an optimal algorithm for
disparity estimation.

The most common computational model of disparity
processing is the local cross-correlation model (Banks
et al., 2004; Cormack et al., 1991; Tyler & Julesz, 1978).
In this model, the estimated disparity is the one that
produces the maximum local cross-correlation between
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the images in the two eyes. Local cross-correlation is
the computational equivalent of appropriately pro-
cessing large populations of disparity-energy complex
cells having a wide range of tuning characteristics
(Anzai, Ohzawa, & Freeman, 1999; Fleet, Wagner, &
Heeger, 1996). Cross-correlation is optimal when the
disparities across a patch are small and constant,
because it is then akin to the simple template matching
of noise-limited ideal observers. Cross-correlation is
not optimal for larger or varying disparities, because
then the left- and right-eye signals falling within a
binocular receptive field often differ substantially.

How does our ideal observer for disparity estimation
compare with the standard disparity-energy and cross-
correlation models? To enable a meaningful compari-
son, both methods were given access to the same image
information. Doing so requires a slight modification to
the standard cross correlation algorithm (see
Supplement). The eight AMA filters in Figure 3
outperform cross-correlation in both accuracy and
precision, when the disparities exceed approximately
7.5 arcmin (Figure S6). This performance increase is
impressive given that local cross-correlation has (in
effect) access to a large bank of filters whereas our
method uses only eight. Furthermore, increasing the
number of AMA filters to 10–12 gives essentially
equivalent performance to cross-correlation for smaller
disparities.

Spatial frequency tuning of optimal linear
binocular filters

The optimal linear binocular filters (the AMA filters)
are selective for low to mid spatial frequencies (1.2–4.7
c/8) and not for higher frequencies (see Figure 3, Figure
S1). To develop an intuition for why, we examined the
binocular contrast signals as a function of frequency
that result from a binocularly viewed, high-contrast
edge (Figure S7). The binocular contrast signals barely
differ above ;6 c/8, indicating that higher spatial
frequencies carry little information for disparity esti-
mation.

This analysis of binocular contrast signals provides
insight into another puzzling aspect of disparity
processing. Human sensitivity to disparity modulation
(i.e., sinusoidal modulations in disparity-defined depth)
cuts off at very low frequencies (;4 c/8) (Banks et al.,
2004; Tyler, 1975). V1 binocular receptive fields tuned
to the highest useful (luminance) spatial frequency (;6
c/8) have widths of ;8 arcmin, assuming the typical
octave bandwidth for cortical neurons. Given that
receptive fields cannot signal variation finer than their
own size, the fact that humans cannot see disparity
modulations higher than ;4 c/8 is nicely predicted by
the ;8 arcmin width suggested by the present analysis.

This size matches previous, psychophysically based
estimates of the smallest useful mechanism in disparity
estimation (Banks et al., 2004; Harris, McKee, &
Smallman, 1997).

Eye movement jitter has previously been proposed as
an explanation for why useful binocular information is
restricted to low spatial frequencies (Vlaskamp, Yoon,
& Banks, 2011). The argument is that jitter and the
relatively long integration time of the stereo system
could ‘‘smear out’’ the disparity signals. Eye movement
jitter certainly can degrade stereo information enough
to render high frequency signals unmeasurable (Figure
S7c, d). However, the analysis in the supplement
(Figure S7) suggests that the low frequency at which
humans lose the ability to detect disparity modulation
may also be explained by the statistics of natural
images.

Generality of findings

Although our analysis is based on calibrated natural
stereo-image patches and realistic characterizations of
human optics, sensors, and neural noise, there are some
simplifying assumptions that could potentially limit the
generality of our conclusions. Here we examine the
effect of these assumptions.

The effect of surface slant and nonplanar depth structure

The stereo-image patches were projections of
fronto-parallel surfaces. In natural scenes, surfaces are
often slanted, which causes the disparity to change
across a patch. We evaluated the effect of surface slant
by repeating our analysis with a training set having a
distribution of slants (see Figure 5d, e and
Supplement). This distribution of slants produced a
distribution of disparity gradients that are comparable
to those that occur when viewing natural scenes
(Hibbard, 2008) (Figure S1g). The optimal binocular
filters are only very slightly affected by surface slant
(c.f., Figure 3 and Figure S1a). These differences
would be difficult to detect in neurophysiological
experiments. This may help explain why there has
been little success in finding neurons in early visual
cortex that are tuned to nonzero slants (Nienborg et
al., 2004). Disparity estimation performance is also
quite similar, although estimate precision is somewhat
reduced (Figure 5d, e).

Even after including the effect of surface slant, our
training set lacks the non-planar depth structure—
within-patch depth variation and depth discontinuities
(occlusions)—that is present in natural scenes (Figure
S8a–c). To determine how the magnitude of these
other sources depth variation compare to that due to
slant, we analyzed a set of range images obtained with
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a high-precision Riegl VZ400 range scanner (see
Supplement). We find that most of the depth variation
in the range images is captured by variation in slant
(Figure S8d). Given that variation in slant has little
effect on the optimal receptive fields, and given that
locations of fine depth structure and monocular
occlusion zones (;9% of points in our dataset) are
most likely random with respect to the receptive fields,
then it is likely that the other sources of variation will
have little effect.

Nevertheless, occlusions create monocular zones that
carry information supporting da Vinci stereopsis in
humans (Kaye, 1978; Nakayama & Shimojo, 1990).
Neurophysiological evidence suggests that binocular
mechanisms exist for locating occlusion boundaries
(Tsao, Conway, & Livingstone, 2003). In the future,
when databases become available of high-quality
natural stereo images with coregistered RGB and
distance information, the general approach described
here may prove useful for determining the filters that
are optimal for detecting occlusion boundaries.

The effect of a realistic disparity prior

Our analysis assumed a flat prior probability
distribution over disparity. Two groups have recently
published estimates of the prior distribution of
disparities, based on range measurements in natural
scenes and human eye movement statistics (Hibbard,
2008; Liu et al., 2008). Does the prior distribution of
disparity signals have a significant effect on the optimal
filters and estimation performance? To check, we
modified the frequency of different disparities in our
training set to match the prior distribution of
disparities encountered in natural viewing (Liu et al.,
2008). Linear filter shapes, LL neuron tuning curve
shapes, and performance levels were robust to differ-
ences between a flat and realistic disparity prior.

It has been hypothesized that the prior over the
stimulus dimension of interest (e.g., disparity) may
determine the optimal tuning curve shapes and the
optimal distribution of peak tunings (i.e., how the
tuning curves should tile the stimulus dimension)
(Ganguli & Simoncelli, 2010). In evaluating this
hypothesis, one must consider the results presented in
the present paper. Our results show that natural signals
and the linear receptive fields that filter those signals
place strong constraints on the shapes that tuning
curves can have. Specifically, the shapes of the LL
neuron disparity tuning curve (approximately log-
Gaussian) are robust to changes in the prior. Thus,
although the prior may influence the optimal distribu-
tion of peak tuning (our analysis does not address this
issue), it is unlikely to be the sole (or even the primary)
determinant of tuning curve shapes.

The effect of contrast normalization

Contrast normalization significantly contributes to
the Gaussian form of the filter response distributions.
One potential advantage of Gaussian response distri-
butions is that pair-wise (and lower order) statistics
fully characterize the joint responses from an arbitrary
number of filters, making possible the decoding of large
filter population responses. In the analysis presented
here, all binocular signals were normalized to a mean of
zero and a vector magnitude of 1.0 before being
projected onto the binocular filters. This is a simplified
form of the contrast normalization that is a ubiquitous
feature of retinal and early cortical processing (Car-
andini & Heeger, 2012). The standard model of
contrast normalization in cortical neurons is given by

cnorm(x)¼ c(x)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjcðxÞjj2 þ nc2

50

q
where n is the dimen-

sionality of the vector and c50 is the half-saturation
constant (Albrecht & Geisler, 1991; Albrecht &
Hamilton, 1982; Heeger, 1992). (The half-saturation
constant is so-called because, in a neuron with an
output squaring nonlinearity, the response rate will
equal half its maximum when the contrast of the
stimulus equals the value of c50.)

We examined the effect of different half-saturation
constants. The optimal filters are robust to different
values of c50. The conditional response distributions are
not. For large values of c50 the response distributions
have tails much heavier than Gaussians. When c50¼ 0.0
(as it did throughout the paper), the distributions are
well approximated but somewhat lighter-tailed than
Gaussians. The distributions (e.g., see Figure 4a) are
most Gaussian on average when c50 ¼ 0.1 (Figure S9).
On the basis of this finding, we hypothesize a new
function for cortical contrast normalization in addition
to the many already proposed (Carandini & Heeger,
2012): Contrast normalization may help create condi-
tional filter response distributions that are Gaussian,
thereby making simpler the encoding and decoding of
high-dimensional subspaces of retinal image informa-
tion.

The effect of different optics in the two eyes

We modeled the optics of the two eyes as being
identical, whereas refractive power and monochromatic
aberrations often differ somewhat between the eyes
(Marcos & Burns, 2000). To evaluate the effect of
normal optical variations, we convolved the retinal
projections with point-spread functions previously
measured in the first author’s left and right eyes (Burge
& Geisler, 2011). (The first author has normal optical
variation.) Then, we determined optimal filters and
performance. Filters and performance levels are similar
to those in Figures 3 and 4. Thus, our results are robust
to typical optical differences between the eyes. How-
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ever, if the optics in one eye is severely degraded
relative to the other, then the optimal filters are quite
different, and disparity estimation performance is
significantly poorer.

Interestingly, a persistent . 4 diopter difference in
refractive power between the two eyes is the most
important risk factor for the development of amblyopia
(Levi, McKee, & Movshon, 2011), a condition char-
acterized by extremely poor or absent stereopsis
(among other deficits). A four diopter difference
between the left and right eye optics drastically reduces
(i.e., nearly eliminates) computable interocular contrast
signals that covary systematically with disparity
(Equation S6, Figure S7e–h).

Conclusions

The method presented here provides a prescription
for how to optimally estimate local depth cues from
images captured by the photosensors in any vision
system. Our analysis of the depth cue of binocular
disparity provides insight into the computations and
neural populations required for accurate estimation of
binocular disparity in animals viewing natural scenes.
Specifically, by analyzing the information available at
the photoreceptors, we improve upon existing compu-
tational methods for solving the stereo correspondence
problem and provide a normative account of a range of
established neurophysiological and psychophysical
findings. This study demonstrates the power of
characterizing the properties of natural signals that are
relevant for performing specific natural tasks. A similar
recent analysis provided insight into the neural
computations required for accurate estimation of the
focus error (defocus) in local regions of retinal images
of natural scenes (Burge & Geisler, 2011; Stevenson et
al., 1992). The same approach seems poised to provide
insight into the neural encoding and decoding that
underlie many other fundamental sensory and percep-
tual tasks.

Methods details

Natural disparity signals

To determine the luminance structure of natural
scenes, we photographed natural scenes on and around
the University of Texas at Austin campus with a tripod-
mounted Nikon D700 14-bit SLR camera (4256 · 2836
pixels) fitted with a Sigma 50 mm prime lens (Burge &
Geisler, 2011). To ensure sharp photographs, the
camera lens was focused on optical infinity, and all

imaged objects were at least 16 m from the camera.
RAW photographs were converted to luminance values
using the measured sensitivities of the camera (Burge &
Geisler, 2011; 2012) and the human photopic sensitivity
function (Stockman & Sharpe, 2000). Twelve hundred
256 · 256 pixel patches were randomly selected from
80 photographs (15 Patches · 80 Images; Figure 1b).
Four hundred were used for training; the other 800
were used for testing.

To approximate the depth structure of natural
scenes, we texture map the luminance patches onto
planar fronto-parallel or slanted surface patches that
were straight ahead at eye height. After perspective
projection, this procedure yields the same pattern of
retinal stimulation that would be created by viewing
photographs pasted on surfaces (e.g., walls) differently
slanted in depth. The disparity of the surface patch was
defined as the disparity of the surface’s central point

d ¼ 2 tan�1 IPD=2

dfixation þ D

� �
� tan�1 IPD=2

ðdfixationÞ

� �� �
;

ð6Þ
where dfixation is the fixation distance to the surface
center, IPD is the interpupillary distance, and D is the
depth. Depth is given by D ¼ dsurface � dfixation where
dsurface is the distance to the surface. The disparity of
other points on the surface patch varies slightly across
the surface patch. The change in disparity across the
surface is greater when the surface patches are slanted.

Each surface patch was either coincident with or
displaced from the point of fixation (Figure 1c); that is,
the surface patches were positioned at one of 37 depths
corresponding to 37 disparity levels within Panum’s
fusional range (Panum, 1858) (�16.875 to 16.875
arcmin in equally spaced steps). Each surface patch
subtended 28 of visual angle from the cyclopean eye.
Surfaces were then slanted (or not) and left- and right-
eye projections were determined via perspective pro-
jection, ensuring that horizontal and vertical disparities
were correct (Figure 1c). Next, left and right projec-
tions were resampled at 128 samples/8, approximately
the sampling rate of the human foveal cones (Curcio,
Sloan, Kalina, & Hendrickson, 1990). Finally, the
images were cropped such that they subtended 18 from
each eye (6 0.58 about the left- and right-eye foveae).

Optics

Patches were defocused with a polychromatic point-
spread function based on a wave-optics model of the
human visual system. The model assumed a 2 mm pupil
(a size typical for a bright, sunny day) (Wyszecki &
Stiles, 1982), human chromatic aberrations (Thibos,
Ye, Zhang, & Bradley, 1992), a single refracting
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surface, and the Fraunhoffer approximation, which
implies that at or near the focal plane the optical
transfer function (OTF) is given by the cross-correla-
tion of the generalized pupil function with its complex
conjugate. In humans and nonhuman primates, ac-
commodative and vergence eye-movement systems are
tightly coupled. In other words, the focus distance
usually equals the fixation distance (Fincham &
Walton, 1957). We set the focus distance equal to the
fixation distance of 40 cm and defocused the images
appropriate for each disparity. See Supplement for
further details of how the optics were simulated.

Sensor array responses

The information for disparity estimation depends on
the depth and luminance structure of natural scenes,
projective geometry, the optics of the two eyes, the
sensor arrays, and the sensor noise. These factors
together determine the pattern of noisy sensor re-
sponses

reðxÞ ¼ IeðxÞ*psfeðxÞ½ �sampðxÞ þ g ð7Þ
for each eye e. Ie(x) represents an eye-specific lumi-
nance image of the light striking the sensor array at
each location x¼ (x, y) in a hypothetical optical system
that causes zero degradation in image quality. Each
eye’s optics degrade the idealized image; the optics are
represented by a polychromatic point-spread function
psfe(x) that contains the effects of defocus, chromatic
aberration, and photopic wavelength sensitivity. The
sensor arrays are represented by a spatial sampling
functions samp(x). Finally, the sensor responses are
corrupted by noise g; the noise level was set just high
enough to remove retinal image detail that is unde-
tectable by the human visual system (Williams, 1985).
(In pilot studies, we found that the falloff in contrast
sensitivity at low frequencies had a negligible effect on
results; for simplicity we did not model its effects.) Note
that Equation 7 represents a luminance (photopic)
approximation of the images that would be captured by
the photoreceptors. This approximation is sufficiently
accurate for the present purposes (Burge & Geisler,
2011).

Accuracy maximization analysis (AMA)

AMA is a method for dimensionality reduction that
finds the low-dimensional set of features in sensory
signals that are most useful for performing a specific
task. The dependence of AMA on task renders it
distinct from many other popular methods for dimen-
sionality reduction. Principal components analysis
(PCA), for example, finds the dimensions that account

for the most variation in the sensory signals. There is,
of course, no guarantee that factors causing the most
variation in the sensory signals will be useful for the
task at hand. Color, lighting, and the multitude of
textures in natural images, for example, cause signifi-
cant variation in the retinal images. Yet all of this
variation is irrelevant for the task of estimating
disparity. Thus, PCA returns features that are not
necessarily useful to the task, while AMA is specifically
designed to ignore the irrelevant variation.

The logic of AMA is as follows. Consider encoding
each training stimulus with a small population of filters
with known (internal) noise characteristics. The filter
responses are given by the dot product of the contrast-
normalized stimulus, scaled by the maximum response
rate, plus response noise (here, a small amount of
Gaussian noise). With a known noise model, it is
straightforward to compute the mean and variance of
each filter’s response to each training stimulus. Then, a
closed-form expression is derived for the approximate
accuracy of the Bayesian optimal decoder (Geisler,
Najemnik, & Ing, 2009). Finally, this closed-form
expression can be used to search the space of linear
filters to find those that give the most accurate
performance. If the algorithm does not settle in local
minima, it finds the Bayes-optimal filters for maximiz-
ing performance in a given task (Geisler et al., 2009).
Here, different random initializations yielded the same
final estimated filters. A Matlab implementation of
AMA and a short discussion of how to apply it are
available at http://jburge.cps.utexas.edu/research/
Code.html.

It is important to note that the Bayesian optimal
decoder used in AMA requires knowing the means and
variances for each possible stimulus, and hence it can
only be used to decode the training stimuli. In other
words, AMA can find the optimal linear filters given a
large enough training set, but the decoder it uses to
learn those filters cannot be applied to arbitrary stimuli.
A separate analysis (like the one described in the body
of the present paper) is required to determine how to
optimally decode the AMA filter responses for arbi-
trary test stimuli.

Estimating disparity

Increasing the number of disparity levels in the
training set increases the accuracy of disparity estima-
tion. However, increasing the number of disparity
levels in the training set also increases the training set
size and the computational complexity of learning
filters via AMA. A balance must be struck. Excellent
continuous estimates are obtained using 1.875 arcmin
steps for training followed by interpolation of 577 filter
response distributions (i.e., 31 interpolated response
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distribution between each training step, corresponding
to one interpolated distribution every ;3.5 arcsec).
Interpolated distributions were obtained by fitting
cubic splines through the response distribution mean
vectors and covariance matrices. This procedure
resulted in 577 LL neurons, which resulted in posterior
probability distributions that were defined by 577
discrete points. MAP estimates were obtained by
selecting the disparity with the highest posterior
probability. Increasing the number of interpolated
distributions (i.e., LL neurons) had no effect on
performance.

Keywords: natural scene statistics, perceptual con-
stancy, ideal observer, Bayesian statistics, population
code, encoding, decoding, selectivity, invariance, depth
perception, stereopsis, hierarchical model, disparity
energy model, simple cells, complex cells
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1	  
	  

Optimal	  disparity	  estimation	  in	  natural	  stereo-‐images	  
(Supplement)	  

Johannes	  Burge	  &	  Wilson	  S.	  Geisler	  
	  
Computing	  the	  log	  likelihood	  with	  populations	  of	  simple	  and	  complex	  cells	  	  
Simple	   cells	   in	   visual	   cortex	   produce	   only	   positive	   responses,	  whereas	  AMA	   filters	   produce	   both	  
positive	  and	  negative	  responses.	  The	  linear	  AMA	  filter	  responses	  (see	  first	  term	  in	  Eq.	  5)	  and	  their	  
pairwise	  sums	  (see	  the	  sum	  in	  the	  third	  term’s	  parentheses)	  can	  be	  obtained	  from	  a	  population	  of	  
simple	  cells.	  We	  define	  simple	  cells	  as	  units	  whose	  outputs	  result	  from	  linear	  filtering	  followed	  by	  
half-‐wave	  rectification	  (i.e.	  thresholding	  at	  zero).	  Each	  AMA	  filter	  response	  in	  the	  first	  term	  can	  be	  
obtained	  from	  two	  simple	  cells	  that	  are	  ‘on’	  and	  ‘off’	  versions	  of	  each	  AMA	  filter	  (Fig.	  S3a;	  see	  Fig.	  
3).	  Each	  pairwise-‐summed	  AMA	  filter	  response	  in	  the	  third	  term	  can	  be	  obtained	  from	  two	  simple	  
cells	  that	  are	  ‘on’	  and	  ‘off’	  versions	  of	  each	  pairwise-‐summed	  filter	  (Fig.	  S3a,	  S4).	  	  
	  
The	  squared	  AMA	  filter	  responses	  (see	  the	  second	  and	  third	  terms	  in	  Eq.	  5)	  can	  be	  obtained	  from	  a	  
population	  of	  complex	  cells.	  We	  define	  complex	  cells	  as	  units	  whose	  responses	  result	   from	   linear	  
filtering	   followed	  by	  a	   squaring	  non-‐linearity,	   as	   is	  often	   the	   case	   in	   cortex.	  Complex	   cells	   can	  be	  
implemented	  by	  summing	  and	   then	  squaring	  (or	  squaring	  and	   then	  summing)	   the	  outputs	  of	   ‘on’	  
and	   ‘off’	  simple	  cells	  (Fig.	  S3b;	   the	  disparity	   tuning	  curves	  of	   these	  complex	  cells	  are	  given	   in	  Fig.	  
S5).	  
	  
Finally,	   neurons	  whose	   response	   rates	   represent	   the	   log	   likelihood	   of	   the	   AMA	   filter	   population	  
responses	  can	  be	  constructed	  via	  a	  weighted	  sum	  of	  simple	  and	  complex	  cell	  population	  responses	  
(Eq.	  5,	  Fig.	  6,	  Fig.	  7).	  (Note	  that	  the	  likelihood	  can	  be	  obtained	  by	  exponentiating	  the	  log-‐likelihood	  
responses.)	   In	  other	  words,	  a	   large	  collection	  of	   log-‐likelihood	  (LL)	  neurons,	  each	  with	  a	  different	  
preferred	   disparity,	   can	   be	   constructed	   from	   a	   fixed	   set	   of	   simple	   and	   complex	   cells	   simply	   by	  
changing	  the	  weights.	  	  
	  
Derivation	  of	  optimal	  weights	  on	  simple	  and	  complex	  cells	  
The	  first	  term	  in	  Eq.	  5	  (i.e.	  the	  linear	  term)	  can	  be	  conceptualized	  as	  a	  weighted	  sum	  of	  simple	  cell	  
population	  responses.	  The	  second	  and	  third	  terms	  (i.e.	  the	  quadratic	  terms)	  can	  be	  conceptualized	  
as	   weighted	   sums	   of	   complex	   cell	   population	   responses.	   The	   constant	   corresponds	   to	   baseline	  
response.	  The	  constant	  and	  the	  weights	  on	  the	  linear,	  squared,	  and	  sum-‐squared	  filters	  are	  given	  by	  

   
wi,k = Ck

−1uk 	   	   	   	   	   	   	   	   	   (S1a)	  

	  
   
wii,k = −diag(C−1)+ 0.5C−11 	   	   	   	   	   	   	   (S1b)	  

   
wij ,k = −0.5Cij

−1 ,∀ij, j > i 	  	   	   	   	   	   	   	   (S1c)	  

cons ′tk = −0.5uk
TCk

−1uk + constk 	   	   	   	   	   	   (S1d)	  
	  
where	  I	   is	   the	   identity	  matrix,	  1	   is	   the	   ‘ones’	  vector,	  and	  diag()	  sets	  a	  matrix	  diagonal	  to	  a	  vector.	  
Here,	  we	  derive	  these	  weight	  equations	  based	  on	  the	  multi-‐dimensional	  Gaussian	  approximations	  
to	  the	  empirically	  determined	  filter	  response	  distributions	  (i.e.	  conditional	  response	  distributions)	  
(see	  Fig.	  4a).	  	  
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First,	  we	  rewrite	  Eq.	  5	  in	  the	  main	  text	  by	  expanding	  its	  third	  term	  
	  

   
ln p R δ k( ) = wi,k Ri

i=1

n

∑ + wii,k Ri
2

i=1

n

∑ + wij ,k Ri
2 + 2Ri Rj + Rj

2( )
j=i+1

n

∑
i=1

n−1

∑ + cons ′t 	   (S2)	  

	  
Second,	  we	  rewrite	  Eq.	  4	  in	  the	  main	  text	  

	  

ln p R δ k( ) = −0.5 R − uk( )T Ak R − uk( )+ const 	   	   	   	   	  (S3)	  

	  
where	   Ak 	  equals	   the	   inverse	   covariance	   matrix	   Ck

−1 .	   (Recall	   that	   the	   mean	   vector	   uk and	  
covariance	   matrix	  Ck are	   obtained	   by	   projecting	   a	   collection	   of	   natural	   stereo-‐images	   having	  
disparity	  δ k 	  onto	   the	   filters.)	   From	  here	   forward,	   the	   disparity	   index	  k	   is	   dropped	   for	   notational	  
simplicity.	  Third,	  we	  set	  Eqs.	  S2	  and	  S3	  equal	  to	  one	  another,	  multiply	  through,	  and	  collect	  terms.	  
The	  terms	  of	  the	  log	  likelihood	  (Eq.	  S3)	  are	  found	  to	  have	  the	  form	  
	  

( ) ( )2 2 20.5 0.5 2ii i i ii i ii i i ii ia R u a R a Ru a u− − = − − + 	   	   	   	   (S4a)	  

−aij Ri − ui( ) Rj − u j( ) = − aijRiRj − aijRiu j − aijRjui + aiju jui( ) 	  	   	   (S4b)	  

	  
where	   iia 	  are	   the	  on-‐diagonal	  elements	  of	  A ,	   ija are	  the	  off-‐diagonal	  elements,	  and	   iu 	  the	  are	   the	  
mean	  filter	  responses.	  	  
	  
The	  aim	  is	  now	  to	  express	  wi ,wii ,	  and	  wij 	  in	  terms	  of	   iu ,	   iia ,	  and	   ija .	  First	  consider	  wi .	  In	  this	  case,	  

we	   want	   to	   collect	   terms	   containing	   iR :	  wiRi 	  from	   Eq.	   S2,	   and	   aiiRiui 	  and	   aijRiu j 	  from	   Eq.	   S4a.	  
Setting	  the	   iR 	  terms	  equal	  and	  canceling	  gives	  
	  

wi = aiju j
j=1

n

∑ 	   	   	   	   	   	   	   	   	   (S5a)	  

	  
Note	  that	  the	  weights	  on	  the	  linear	  filter	  responses	  wi 	  are	  zero	  if	  the	  mean	  linear	  filter	  responses	  
ui 	  are	  zero.	   In	  our	  case,	   the	   filter	   response	  distributions	  means	   (i.e.	   the	  means	  of	   the	  conditional	  
response	  distributions)	  are	  all	  near	  zero	  (see	  Fig.	  4a,	  Fig.	  S2).	  Thus,	  the	  weights	  on	  the	  simple	  cell	  
responses	   (Fig.	   6a)	   contribute	   little	   to	   the	   units	   (LL	   neurons)	   that	   respond	   according	   to	   the	   log	  
likelihood	  of	  the	  linear	  filter	  population	  response	  (see	  Discussion).	  
	  
Next,	  consider	  wij ,	   i ≠ j .	   In	  this	  case,	  we	  want	  to	  collect	  terms	  containing	   RiRj :	  2wijRiRj 	  appears	  

in	   Eq.	   S2	   and	  −aijRiRj 	  appears	   in	   Eq.	   S4b.	   Setting	   the	   two	   RiRj 	  terms	   equal	   to	   each	   other	   and	  
canceling	  gives	  
	  

wij = −0.5aij 	   	   	   	   	   	   	   	   	   (S5b)	  
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Next,	  consider	  wii .	  In	  this	  case,	  the	  total	  weight	  on	  
2
iR 	  in	  Eq.	  S2	  must	  be	   0.5 iia− .	  The	  weight	  from	  

the	  third	  term	  of	  Eq.	  S2	  can	  be	  found	  by	  substituting	  wij = −0.5aij .	  Subtracting	  that	  weight	  from	  the	  

total	  weight	  specified	  by	  Eq.	  S4	  gives	  wii :	  
	  

wii = −aii + 0.5 aij
j
∑ 	  	   	   	   	   	   	   	   	   (S5c)	  

	  
Last,	   by	   grouping	   terms	   from	   Eq.	   S4	   that	   are	   independent	   of	   the	   filter	   response,	   we	   find	   the	  
constant	  in	  Eq.	  S2	  is	  given	  by	  
	  

cons ′t = −0.5 aiiµi
2 + aijµiµ j

j ,∀j≠i
∑

⎛

⎝⎜
⎞

⎠⎟i
∑ + const 	   	   	   	   (S5d)	  

	  
Eqs.	  S1a-‐d	  are	  obtained	  by	  rewriting	  Eqs.	  S5a-‐d	  in	  matrix	  notation.	  	  
	  
In	  visual	  cortex,	  simple	  and	  complex	  cells	  have	  the	  same	  maximum	  firing	  rates	  on	  average	  (Albrecht	  
&	  Hamilton,	  1982).	  However,	  the	  maximum	  possible	  response	  of	  the	  squared	  filters	  (see	  the	  second	  
term	  in	  Eq.	  5)	  is	   R2max ,	  and	  the	  maximum	  possible	  response	  of	  the	  sum-‐squared	  filters	  (see	  the	  third	  

term	   in	  Eq.	  5)	   is	  given	  by	   R2ijmax = Rmax 2+ 2fi ⋅ f j( )2 	  where	   fi 	  and	   f j 	  are	   the	  weighting	   functions	  
defining	  filters	  i	  and	  j	  (see	  Fig.	  3a).	  Thus,	  if	  these	  computations	  were	  implemented	  in	  cortex—that	  
is,	  if	  the	  maximum	  response	  of	  the	  complex	  cells	  equaled	  the	  maximum	  response	  of	  the	  simple	  cells	  
Rmax ,	   rather	   than	   R

2
max 	  and	   R

2
ijmax—the	   weights	   on	   the	   complex	   cell	   responses	   must	   be	   scaled.	  

Thus,	  the	  optimal	  weights	  on	  complex	  cells	  are	  given	  by	   ′wi = wi ,	   ′wii = Rmaxwii ,	  and	   ′wij =
Rijmax
2

Rmax
wij .	  

These	  scale	  factors	  are	  important	  because	  in	  a	  neurophysiological	  experiment	  one	  would	  measure	  
′w ,	  not	  w .	  Consequently,	   ′wii 	  and	   ′wij 	  are	  the	  normalized	  weights	  plotted	  in	  Fig.	  7b.	  

	  
Evaluating	  the	  effect	  of	  surface	  slant	  
Slant	   causes	   disparity	   to	   change	   across	   the	   patch.	   We	   evaluated	   the	   effect	   of	   surface	   slant	   by	  
determining	  the	  optimal	  filters	  and	  estimation	  performance	  for	  a	  training	  set	  with	  a	  distribution	  of	  
slants.	   If	  we	  assume	   (plausibly)	   that	  objects	   are	  on	  average	  equally	   likely	   to	  be	  viewed	   from	  any	  
given	  angle,	  then	  for	  a	  given	  small	  angular	  retinal	  extent	  the	  probability	  of	  a	  given	  slant	  about	  the	  
vertical	   axis	   should	   fall	   as	   a	   half-‐cosine	   function.	   Slant	   was	   calculated	   for	   the	   cyclopean	   eye.	   To	  
evaluate	  the	  effect	  of	  surface	  slant	  variation,	  we	  generated	  a	  training	  set	  of	  stereo-‐images	  from	  a	  set	  
of	   surfaces	  with	   slants	   that	  were	   randomly	  drawn	   from	  a	   truncated	   (+71	  deg)	   cosine	  probability	  
density	  (more	  extreme	  slants	  were	  not	  practical	  to	  include	  because	  of	  the	  surface	  size	  required	  to	  
produce	   a	   projected	   patch	   width	   of	   1	   deg).	   The	   within-‐patch	   changes	   in	   disparity	   that	   were	  
introduced	  by	  these	  slants	  are	  comparable	  to	  those	  in	  natural	  viewing	  (Fig.	  S1g).	  Results	  based	  on	  
this	  analysis	  are	  thus	  likely	  to	  be	  representative.	  Then,	  we	  determined	  the	  optimal	  binocular	  filters	  
for	  this	  new	  training	  set.	  The	  filters	  that	  were	  trained	  on	  surfaces	  having	  different	  slants	  (Fig.	  S1a-‐c)	  
and	  the	  LL	  neurons	  that	  are	  constructed	  from	  them	  (Fig.	  S1d,e)	  are	  quite	  similar	  to	  those	  that	  were	  
trained	   only	   on	   fronto-‐parallel	   surfaces.	   The	  main	   (although	   slight)	   differences	   are	   that	   the	   new	  
filters	  have	  spatial	  extents	  that	  are	  slightly	  smaller	  and	  octave	  bandwidths	  that	  are	  slightly	  higher,	  
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and	  that	  the	  new	  LL	  neuron	  tuning	  curves	  are	  broader.	  Disparity	  estimation	  performance	  on	  slant	  
surfaces	  is	  also	  comparable,	  but	  precision	  is	  somewhat	  reduced	  (Fig.	  S1f,	  Fig.	  5d).	  When	  disparity	  
changes	   across	   the	   patch,	   the	   optimal	   encoding	   filters	   must	   be	   small	   enough	   to	   prevent	   the	  
disparity	   signal	   from	   being	   ‘smeared	   out’	   by	   within-‐patch	   (i.e.	   within-‐receptive	   field)	   disparity	  
variation.	  And	  they	  must	  be	  large	  enough	  to	  prevent	  a	  poor	  signal-‐to-‐noise	  ratio,	  which	  would	  lead	  
to	  a	  preponderance	  of	  false	  matches	  (i.e.	  inaccurate	  disparity	  estimates).	  The	  optimal	  filters	  appear	  
to	  strike	  this	  balance.	  	  
	  
Evaluating	  the	  effect	  of	  depth	  variations	  other	  than	  slant	  
Naturally	  occurring	  fine	  depth	  structure	  and	  occlusions	  (i.e.	  within-‐patch	  depth	  variation	  and	  depth	  
discontinuities;	   Fig.	   S8a-‐c)	  were	  not	  present	   in	   either	  of	   our	   training	   sets.	  To	  determine	  how	   the	  
magnitude	   of	   these	   other	   sources	   of	   depth	   variation	   compare	   to	   that	   due	   to	   slant,	   we	   analyzed	  
40,000	  1	  deg	  patches	   from	  30	  outdoor	   range	   images	  obtained	  with	   a	  high-‐precision	  Riegl	  VZ400	  
range	  scanner.	  For	  each	  patch,	  we	  computed	  the	  standard	  deviation	  of	   i)	   the	  differences	  between	  
the	   raw	   range	   values	   and	   the	   best-‐fitting	   fronto-‐parallel	   plane,	  

 
σ non− planar ,	   and	   ii)	   the	   differences	  

between	   the	   best-‐fitting	   slanted	   and	   fronto-‐parallel	   planes,	   
σ planar .	   The	   ratio	   of	   these	   standard	  

deviations	  
 
σ planar σ non− planar 	  provides	  a	  measure	  of	  the	  relative	  magnitude	  of	  depth	  variation	  due	  to	  

slant	  and	  variation	  due	  to	  other	  factors.	  If	  the	  depth	  variation	  is	  due	  only	  to	  surface	  slant,	  then	  the	  
ratio	  

 
σ planar σ non− planar 	  will	  have	  a	  value	  equal	   to	  1.0.	   If	  all	  of	   the	  depth	  variation	   is	  due	  to	   factors	  

other	  than	  slant,	  the	  ratio	  will	  have	  a	  value	  of	  0.0.	  Fig.	  S8d	  plots	  the	  distribution	  of	  this	  ratio	  for	  all	  
range	  patches.	   In	   the	  most	  common	  patches,	  essentially	  all	   the	  variation	   is	  captured	  by	  slant	  (i.e.,	  
the	  modal	  ratio	   is	  ~1.0).	  The	  median	  ratio	  is	  0.75,	   indicating	  that	   in	  the	  median	  patch	  75%	  of	  the	  
depth	  variation	  is	  captured	  by	  slant.	  Given	  that	  the	  optimal	  binocular	  filters	  are	  robust	  to	  variation	  
in	   surface	  slant,	   and	  given	   that	  most	  of	  natural	  depth	  variation	   is	   captured	  by	  slant,	   it	   is	  unlikely	  
that	  depth	  variation	  other	  than	  slant	  will	  qualitatively	  affect	  our	  results.	  
	  
External	  variability	  and	  neural	  noise	  	  
We	  examined	  the	  relative	  magnitude	  of	  stimulus-‐induced	  LL	  neuron	  variability	  and	  typical	  neural	  
noise	   in	   cortex.	   Typical	   cortical	   neurons	   have	   a	   peak	   mean	   response	   larger	   than	   30	   spikes/sec	  
(Geisler	  &	  Albrecht,	  1997)	  and	  intrinsic	  noise	  variance	  proportional	  to	  the	  neuron’s	  mean	  response,	  
with	  a	  proportionality	  constant	  (i.e.	  Fano	   factor)	   less	   than	  1.5(Tolhurst,	  Movshon,	  &	  Dean,	  1983).	  
To	   err	   on	   the	   side	   of	   too	   much	   neural	   noise,	   we	   assume	   that	   each	   LL	   neuron	   has	   a	   maximum	  
average	  response	  of	  30	  spks/s	  and	  a	  Fano	  factor	  of	  1.5	  (b.c.	   the	  effect	  of	  noise	   is	  greater	  at	   lower	  
firing	   rates).	   We	   convert	   the	   LL	   neuron	   responses	   to	   spike	   rates	   by	   first	   obtaining	   the	   average	  
response	  of	  each	  LL	  neuron	  to	  its	  preferred	  disparity,	  and	  then	  scaling	  that	  value	  to	  the	  maximum	  
average	  response.	  For	  an	  integration	  time	  of	  a	  typical	  fixation	  duration	  (300	  ms),	  stimulus-‐induced	  
response	   variance	   was	   ~3x	   greater	   than	   the	   internal	   noise.	   For	   an	   integration	   time	   equal	   to	   a	  
typical	  stimulus	  presentation	  in	  a	  psychophysical	  task	  (1	  sec)	  ,	  stimulus-‐induced	  response	  variance	  
was	   ~9x	   greater	   than	   the	   internal	   noise.	   Thus,	   external	   variability	   must	   be	   considered	   to	  
understand	  the	  influence	  of	  neural	  noise	  on	  the	  behavioral	  limits	  of	  vision	  under	  natural	  conditions.	  
In	  fact,	  stimulus-‐induced	  variability	  is	  likely	  to	  be	  the	  controlling	  variability	  in	  many	  natural,	  single-‐
trial	  tasks.	  
	  
Spatial	  frequency	  tuning	  of	  optimal	  linear	  binocular	  filters	  	  
To	   develop	   an	   intuition	   for	   why	   spatial	   frequencies	   higher	   than	   ~6	   cpd	   carry	   little	   information	  
about	   disparity,	   we	   examined	   the	   disparity	   signals	   resulting	   from	   a	   binocularly-‐viewed,	   high-‐
contrast,	   cosine-‐windowed	   edge.	   The	   Fourier-‐decomposition	   of	   each	   eye’s	   stimulus	   is	   a	   set	   of	  
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phase-‐aligned	  sinewave	  gratings	  with	  the	  1/f	  contrast	  fall-‐off	  typical	  of	  natural	  scenes(Field,	  1987).	  
The	  binocular	  difference	   signal	   (i.e.	   the	  difference	  of	   the	   left	   and	   right	   signals)	   is	   sinusoidal	  with	  
contrast	  amplitude	  given	  by	  
	  

  
AB f δ k( ) = AL( f )2 + AR( f )2 − 2AL( f )AR( f )cos 2π fδ k( ) 	   	   	   (S6)	  

	  
where f 	  is	   the	   spatial	   frequency,	  δ k 	  is	   a	   particular	   disparity,	   AL ( f ) 	  and	   AR( f ) 	  are	   the	   left	   and	  

right	   eye	   retinal	   amplitudes,	   and	   AB f δ k( ) 	  is	   the	   amplitude	   of	   the	   binocular	   contrast	   difference	  
signal.	  If	  the	  two	  eyes	  have	  identical	  optics,	  the	  left-‐	  and	  right-‐eye	  retinal	  amplitudes	  (which	  include	  
the	  effects	  of	  the	  optics	  and	  the	  1/ f 	  falloff	  of	  natural	   image	  spectra)	  will	  be	  the	  same	  for	  a	  given	  
disparity.	  Fig.	  S7a	  plots	  pattern	  of	  binocular	  contrast	  signals	  for	  each	  of	  several	  disparities.	  Fig.	  S7b	  
shows	   the	   signals	   after	   filtering	   with	   a	   bank	   of	   log-‐Gabor	   filters,	   each	   having	   a	   1.5	   octave	  
bandwidth.	  The	  patterns	  of	  binocular	  contrast	  barely	  differ	  above	  ~6	  cpd.	  A	   filter	  population	  (for	  
disparity	   estimation)	   will	   be	   most	   efficient	   if	   each	   filter	   signals	   information	   about	   a	   range	   of	  
disparities.	  	  
	  
V1	  binocular	  receptive	  fields	  tuned	  to	  the	  highest	  useful	  spatial	   frequency	  (~6	  cpd)	  would	  have	  a	  
spatial	  extent	  of	  ~8	  arcmin,	  assuming	  the	  typical	  1.5	  octave	  bandwidth	  of	  neurons	  in	  cortex.	  Given	  
that	  receptive	  fields	  cannot	  signal	  disparity	  variation	  finer	  than	  their	  own	  width,	  this	  analysis	  may	  
help	   explain	   why	   humans	   lose	   the	   ability	   to	   detect	   disparity	   modulations	   (i.e.	   sinusoidal	  
modulations	   in	   disparity-‐defined	   depth)	   at	   spatial	   frequencies	   higher	   than	   ~4	   cpd	   (Banks,	  
Gepshtein,	  &	  Landy,	   2004;	  Harris,	  McKee,	  &	   Smallman,	   1997).	   Vergence	   eye	  movement	   jitter	   has	  
previously	  been	  proposed	  as	  an	  explanation	   for	  why	  useful	  binocular	   information	   is	   restricted	   to	  
low	   spatial	   frequencies	   (Vlaskamp,	   Yoon,	   &	   Banks,	   2011):	   vergence	   noise	   can	   degrade	   stereo	  
information	   enough	   to	   render	   high	   frequency	   signals	   unmeasurable	   (Fig.	   S7c,d).	   The	   analysis	  
presented	   here	   suggests	   that	   the	   frequency	   at	   which	   humans	   lose	   the	   ability	   to	   detect	   disparity	  
modulation	  may	  simply	  be	  explained	  by	  the	  statistics	  of	  natural	  images.	  
	  
Optics	  
The	  retinal	   images	  used	  in	  our	  analysis	  were	  simulated	  to	  match	  the	  retinal	   image	  formation	  that	  
occurs	  in	  the	  human	  eye.	  In	  humans	  and	  non-‐human	  primates,	  accommodative	  and	  vergence	  eye-‐
movement	  systems	  are	  yoked(Fincham	  &	  Walton,	  1957).	  Consistent	  with	  this	  fact,	  we	  set	  the	  focus	  
distance	   equal	   to	   the	   fixation	   distance	   of	   40	   cm	   and	   defocused	   the	   images	   appropriate	   for	   each	  
disparity.	  The	  image	  of	  a	  surface	  displaced	  from	  the	  fixation	  is	  defocused	  by	  

	  
ΔD ≅ δ IPD 	   	   	   	   	   	   	   	   	   	   (S7)	  

	  
where	  δ 	  is	   the	   disparity	   of	   the	   surface	   expressed	   in	   radians,	   IPD	   is	   the	   inter-‐pupillary	   distance	  
expressed	   in	  meters,	  and	  ΔD 	  is	   the	  defocus	  expressed	   in	  diopters	   (1/meters).	  To	  account	   for	   the	  
effect	  of	  chromatic	  aberration	  we	  created	  a	  different	  polychromatic	  point-‐spread	  function	  (PSF)	  for	  
each	  disparity	  (i.e.	  defocus,	  Eq.	  S7).	  Single-‐wavelength	  PSFs	  were	  computed	  every	  10	  nm	  between	  
400	   and	   700	   nm.	   The	   wavelength-‐dependent	   change	   in	   refractive	   power	   of	   the	   human	   eye	   was	  
taken	  from	  the	  literature	  (Thibos,	  Ye,	  Zhang,	  &	  Bradley,	  1992).	  Polychromatic	  PSFs	  were	  obtained	  
by	  weighting	  the	  single-‐wavelength	  PSFs	  by	  the	  photopic	  sensitivity	  function	  (Stockman	  &	  Sharpe,	  
2000)	  and	  by	  the	  D65	  daylight	  illumination	  spectrum,	  and	  then	  summing:	  
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psf photopic x,ΔD( ) = 1

K
psf x,λ,ΔD( )sc

λ
∑ λ( )D65 λ( ) 	   	   	   	   (S8)	  

	  
where	   sc λ( ) 	  is	  the	  human	  photopic	  sensitivity	  function,	  and	  K	  is	  a	  normalizing	  constant	  that	  sets	  
the	  volume	  of	   psf photopic 	  to	  1.0.	  The	  modulation	  transfer	  function	  (MTF)	  is	  the	  amplitude	  of	  the	  
Fourier	  transform	  of	  the	  PSF.	  
	  
Contrast	  normalization	  
Contrast	   normalization	   occurs	   early	   in	   visual	   processing.	   The	   standard	  model	   of	   cortical	   neuron	  
response	   assumes	   that	   the	   input	   is	   the	   contrast	   signal,	  

  
c x( ) = r x( )− r( ) r ,	   where	    r x( ) 	  are	   the	  

noisy	  sensor	  responses	  to	  the	  luminance	  image	  falling	  on	  the	  retina	  over	  a	  local	  area	  and	   r 	  is	  the	  
local	   mean.	   This	   contrast	   signal	   is	   then	   normalized	   by	   the	   local	   contrast:	  

   
cnorm x( ) = c x( ) c x( ) 2

+ nc50
2 ,	  where	  n	   is	   the	  dimensionality	   of	   the	   vector,	   c x( ) 2 	  is	   the	   contrast	  

energy	  (or	  equivalently,	   n 	  times	  the	  squared	  RMS	  contrast),	  and	   50c 	  is	  the	  half-‐saturation	  constant	  
(Albrecht	  &	  Geisler,	  1991;	  Albrecht	  &	  Hamilton,	  1982;	  Heeger,	  1992).	   (We	  are	  agnostic	  about	   the	  
mechanism	   by	   which	   the	   contrast	   normalization	   is	   achieved.)	   Finally,	   the	   normalized	   contrast	  
signal	  is	  weighted	  by	  the	  cortical	  neuron’s	  receptive	  field	  and	  passed	  through	  a	  static	  non-‐linearity.	  
For	  example,	  in	  the	  case	  of	  a	  binocular	  simple	  cell,	  the	  response	  of	  the	  neuron	  is	  obtained	  by	  taking	  
the	  dot	  product	  of	  the	  contrast-‐normalized	  signal	  with	  the	  receptive	  field	  and	  half-‐wave	  rectifying,	  

   
Ri = Rmax cnorm x( ) ⋅ fi x( )⎢⎣ ⎥⎦ .	  	  
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Figure	   S1.	   Optimal	   filters	   and	   disparity	   estimation	   performance	   for	   estimating	   disparity	   for	   surfaces	   with	   a	   cosine	  
distribution	   of	   slants.	   (a)	   Optimal	   linear	   binocular	   filters	   for	   estimating	   the	   disparity	   (of	   the	   center	   pixel)	   of	   slanted	  
surfaces.	  The	  filters	  were	  learned	  on	  a	  training	  set	  having	  surfaces	  with	  a	  cosine	  distribution	  of	  slants.	  The	  optimal	  filter	  
shapes	  are	  robust	  to	  the	  presence	  of	  non-‐zero	  surface	  slants	  in	  the	  training	  set.	  However,	  these	  filters	  are	  of	  somewhat	  
smaller	   spatial	   extent	   and	   slightly	   higher	   octave	   bandwidth	   (compare	   filters	   F3-‐F5	   to	   those	   in	   Fig.	   3).	   (b)	   Spatial	  
frequency	   tuning	   and	   bandwidth	   of	   filters.	   (c)	   Two-‐dimensional	   analogs	   of	   filters	   in	   (a).	   The	   two-‐dimensional	   filters	  
respond	  virtually	  identically	  to	  two-‐dimensional	  images,	  as	  do	  the	  one-‐dimensional	  filters	  to	  one-‐dimensional	  signals.	  (d)	  
Tuning	  curves	  of	  LL	  neurons	  trained	  and	  tested	  on	  surfaces	  with	  varying	  surface	  slant.	  (e)	  Normalized	  weights	  on	  model	  
complex	  cell	  responses	  for	  constructing	  five	  LL	  neurons	  with	  the	  indicated	  preferred	  disparities.	  (f)	  Disparity	  estimation	  
performance	  with	  surfaces	  having	  a	  cosine	  distribution	  of	  slants	  (black	  line).	  Also	  shown	  are	  disparity	  estimates	  derived	  
from	  a	  local	  cross-‐correlator	  (gray	  line).	  (g)	  Disparity	  gradients	  from	  viewing	  natural	  scenes(Hibbard,	  2008)	  vs.	  disparity	  
gradients	  in	  our	  training	  set.	  The	  relationship	  between	  slant	  and	  disparity	  gradient	  is	  given	  by	  

  g ≈ IPD tanθ( ) / d 	  where	  
θ 	  is	  the	  surface	  slant	  and	  d	  is	  the	  distance	  to	  the	  surface.	  Hibbard	  (2008)	  estimated	  disparity	  gradients	  in	  natural	  viewing	  
for	   distances	   nearer	   than	   3.5	   m	   (dashed	   curve)	   and	   0.5	   m	   (dotted	   curve).	   At	   the	   0.4m	   viewing	   distance	   assumed	  
throughout	  the	  paper,	  our	  manipulation	  of	  surface	  slant	  introduced	  distribution	  of	  disparity	  gradients	  (black	  line)	  that	  is	  
comparable	  to	  the	  gradients	  introduced	  in	  natural	  viewing.	  
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Figure	   S2.	   Filter	   responses,	   LL	  neuron	   responses,	   and	  performance	  with	   random-‐dot	   stereograms	   and	   anti-‐correlated	  
random-‐dot	   stereograms.	   (a)	   Joint	   response	   distributions	   of	   filters	   F1	   and	   F2	   when	   stimulated	   with	   random-‐dot	  
stereograms.	  Compare	  to	  natural	  stimuli	  in	  Fig.	  4a.	  (b)	  Joint	  responses	  of	  filters	  F3	  and	  F4	  when	  stimulated	  with	  random-‐
dot	   stereograms.	   (c)	   LL	   neuron	   responses	   to	   random	   dot	   stereograms.	   (d)	   LL	   neuron	   tuning	   vs	   bandwidth	   when	  
stimulated	  with	  natural	  stimuli.	  Note	  that	  bandwidths	  are	  elevated	  compared	  to	  when	  the	  LL	  neurons	  are	  stimulated	  with	  
natural	   stimuli	   (see	   Fig.	   7c).	   (e)	   Disparity	   estimates	   and	   estimate	   precision	   (inset)	   obtained	   with	   random-‐dot	  
stereograms.	  (f,g,h,i)	  Same	  as	  a,b,c,e	  except	  that	  the	  stimuli	  were	  anti-‐correlated	  random	  dot	  stereograms.	  Filter	  response	  
distributions	   still	   segregate	   as	   a	   function	   of	   disparity	   (especially	   with	   F3	   and	   F4).	   However,	   the	   anti-‐correlated	   filter	  
response	  distributions	  do	  not	  coincide	  with	  the	   ‘expected’	  pattern	  of	  response	  for	  particular	  disparities.	  The	  disparities	  
are	   decoded	   improperly	   with	   a	   decoder	   trained	   on	   natural	   stimuli.	   LL	   neuron	   tuning	   curves	   with	   anti-‐correlated	  
stereograms	  are	  neither	  selective	  nor	  invariant.	  Inaccurate,	  highly	  variable	  estimates	  result.	  
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Figure	   S3.	   Obtaining	  AMA	   filter	   and	  model	   complex	   cell	   responses	  with	   established	   neural	   operations	   (a)	   Simple	   cell	  
responses	  are	  obtained	  by	  projecting	   the	   left-‐	   and	   right-‐eye	   signals	  onto	  each	  binocular	   filter	  and	  half-‐wave	   rectifying.	  
Subtracting	   ‘on’	   and	   ‘off’	   simple	   cell	   responses	   give	   the	   AMA	   filter	   responses	   (see	   Fig.	   3a).	   (b)	   Model	   (and	  
neurophysiological)	  complex	  cell	  responses	  are	  obtained	  by	  summing	  and	  squaring	  the	  responses	  of	  simple	  cells.	  (Model	  
complex	   cell	   responses	   can	   also	   be	   obtained	   by	   summing	   the	   responses	   of	   simple	   cells	   that	   have	   both	   a	   half-‐wave	  
rectifying	  and	  a	  squaring	  nonlinearity.)	  Note	  that	  the	  model	  complex	  cells	  differ	  from	  canonical	  disparity	  energy	  binocular	  
complex	  cells.	  We	  label	  them	  ‘complex’	  because	  they	  exhibit	  temporal	  frequency	  doubling	  and	  have	  a	  fundamental	  to	  DC	  
response	  ratio	  of	  less	  than	  one.	  The	  model	  LL	  neurons	  (see	  Fig.	  6	  and	  Fig.	  7)	  are	  more	  similar	  to	  disparity	  energy	  complex	  
cells	  although,	  as	  noted	  in	  the	  text,	  there	  are	  also	  important	  differences.	  
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Figure	  S4.	  The	  eight	  AMA	  filters	  from	  Fig.	  3	  (on	  the	  diagonal)	  and	  their	  pairwise	  sums	  (see	  Fig.	  S3a).	  Solid	  and	  dashed	  
curves	  indicate	  the	  left	  and	  right	  eye	  filter	  components,	  respectively.	  Filter	  identity	  is	  indicated	  by	  the	  subscripts	  Fij.	  Some	  
filters	  have	  shapes	  similar	   to	  canonical	  V1-‐like	  binocular	   receptive	   fields.	  These	   filters	  yield	  model	  complex	  cell	   tuning	  
curves	   that	   vary	  with	   disparity	   (Fig.	   S5).	   Other	   filters	   are	   irregularly	   shaped	   (e.g.	   F36).	   Irregularly	   shaped	   filters	   yield	  
model	   complex	   cell	   tuning	   curves	   that	   do	   not	   vary	   significantly	   with	   disparity	   (Fig.	   S5).	   The	   inset	   shows	   the	   largest	  
absolute	  normalized	  weight	  (see	  Supplement,	  Eqs.	  S1a-‐d)	  given	  to	  each	  filter	  in	  constructing	  the	  set	  of	  LL	  neurons	  (Fig.	  
7a).	   Lighter	   colors	   indicate	   smaller	   weights.	   Unsurprisingly,	   the	   irregularly	   shaped	   filters	   (e.g.	   F36)	   play	   a	   generally	  
smaller	  role	  in	  shaping	  the	  response	  properties	  of	  log-‐likelihood	  (LL)	  neurons.	  	  
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Figure	   S5.	   Disparity	   tuning	   curves	   of	   the	   model	   complex	   cells	   implied	   by	   the	   AMA	   filters	   (on-‐diagonal)	   and	   their	  
normalized	   pairwise	   sums	   (off-‐diagonal).	   Solid	   curves	   show	   the	   complex	   cell	   tuning	   curves	   to	   natural	   stimuli.	   The	  

complex	  response	   is	  given	  by	   filtering	   the	  contrast-‐normalized	  stimulus	  and	  then	  squaring:	  
   
Rmax fi

Tcnorm( )2 	  (see	  Fig.	  S4).	  
Each	  point	  on	  the	  curve	  represents	  the	  average	  response	  to	  a	  large	  number	  of	  natural	  stimuli	  having	  the	  same	  disparity.	  
Gray	   area	   shows	   response	   variability	   due	   to	   variation	   in	   natural	   image	   content.	   Dashed	   curves	   show	   the	   complex	   cell	  
tuning	  curve	  to	  5%	  random-‐dot	  stereograms	  (RDSs).	  In	  most	  cases,	  RDS	  tuning	  curves	  are	  similar	  to	  the	  tuning	  curves	  for	  
natural	   stimuli,	   although	   response	  magnitude	   is	   generally	   somewhat	   attenuated.	  These	   individual	  model	   complex	   cells	  
have	  some	  selectivity	  for	  disparity.	  However,	  they	  exhibit	  little	  invariance	  to	  variation	  in	  natural	  image	  content.	  Thus,	  the	  
pattern	   of	   the	   joint	   population	   response	   must	   be	   used	   to	   accurately	   estimate	   disparity.	   Neurons	   that	   signal	   the	   log-‐
likelihood	  of	  disparity	  (LL	  neurons)	  can	  be	  constructed	  by	  appropriately	  combining	  the	  joint	  responses	  of	  model	  complex	  
cells.	  LL	  neurons	  are	  highly	  selective	  for	  disparity,	  and	  are	  also	  strongly	  response	  invariant	  to	  irrelevant.	  
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Figure	  S6.	  Optimal	  disparity	  estimation	  vs.	  estimation	  via	  local	  cross-‐correlation.	  Performance	  measures	  were	  obtained	  
by	  testing	  each	  method	  on	  identical	  sets	  of	  left-‐	  and	  right-‐eye	  signals,	  like	  those	  shown	  in	  Fig.	  1d.	  (Note	  that	  this	  differs	  
somewhat	   from	   the	  most	   common	   test	   of	   the	   cross-‐correlation	  model,	  which	   gives	   the	   algorithm	  windowed	   access	   to	  
many	  patches	  in	  each	  eye.	  We	  chose	  the	  current	  method	  so	  that	  each	  algorithm	  has	  access	  to	  the	  same	  image	  information,	  
thereby	  making	   the	   comparison	  meaningful.)	   Black	   curves	   indicate	   estimation	  performance	   via	   local	   cross-‐correlation.	  
Gray	  curves	  indicate	  performance	  obtained	  with	  the	  eight	  AMA	  filters	  shown	  in	  the	  main	  text	  (data	  replotted	  from	  Fig.	  5).	  
(a)	  Median	  MAP	  estimates	   for	   frontoparallel	   surfaces	  only.	  Error	  bars	   indicate	  68%	  confidence	   intervals.	  (b)	   Estimate	  
precision	   as	   indicated	   by	   68%	   confidence	   intervals.	   Error	   bars	   from	   (a)	   are	   replotted	   on	   a	   linear	   axis.	   (Confidence	  
intervals	   were	   plotted	   on	   a	   semi-‐log	   plot	   in	   the	   main	   text.)	   (c)	   Sign	   identification	   performance	   with	   frontoparallel	  
surfaces.	   (d,e).	   Same	  as	  b,c	   except	   that	   the	  performance	   is	   for	   surfaces	  with	  a	   cosine	  distribution	  of	   slants.	  Estimation	  
performance	  with	  the	  cross-‐correlator	  is	  (slightly)	  more	  biased	  and	  is	  significantly	  less	  precise	  at	  disparities	  larger	  than	  
7.5	  arcmin.	  	  
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Figure	  S7.	  Information	  for	  disparity	  estimation	  is	  concentrated	  in	  low	  to	  mid	  spatial	  frequencies.	  (a)	  Inter-‐ocular	  retinal	  
contrast	  amplitude	  of	  a	  cosine-‐windowed	  high-‐contrast	  edge	  as	  a	   function	  of	  spatial	   frequency,	   for	  different	  disparities	  
(Eq.	   S6).	   The	   optics	   in	   the	   two	   eyes	  were	   identical;	   i.e.	  

 AL f( ) = AR f( )∝ MTFδ f( ) f 	  where	  MTFδ is	   the	  modulation	  
transfer	   function	  associated	  with	  a	  particular	  disparity	   (see	  Methods).	  (b)	   Inter-‐ocular	   contrast	   signals	   that	  have	  been	  
passed	  through	  a	  bank	  of	  1.5	  octave	  bandwidth	  log-‐Gabor	  filters.	  The	  signals	  differ	  little	  above	  ~5	  cpd.	  (c)	  The	  effect	  of	  
vergence	  jitter	  on	  inter-‐ocular	  contrast	  signals.	  Signals	  were	  corrupted	  by	  2	  arcmin	  of	  vergence	  jitter,	  a	  typical	  value	  in	  
humans.	  Vergence	  noise	  was	  simulated	  by	  convolving	  each	  disparity	  signal	  with	  a	  Gaussian	  having	  a	  standard	  deviation	  of	  
2	   arcmin.	   Vergence	   jitter	   further	   attenuates	   high	   frequency	   inter-‐ocular	   contrast	   signals.	   Natural	   image	   structure	   and	  
vergence	  jitter	  both	  contribute	  to	  the	  lack	  of	  disparity	  information	  at	  high	  luminance	  spatial	  frequencies.	  (d)	  The	  signals	  
in	  (c)	  after	  having	  been	  passed	  through	  a	  bank	  of	  1.5	  octave	  bandwidth	  log-‐Gabor	  filters.	  (e)	  The	  effect	  of	  a	  four	  diopter	  
difference	  in	  refractive	  power	  between	  the	  two	  eyes	  drastically	  reduces	  the	  inter-‐ocular	  contrast	  signal.	  A	  four	  diopter	  (or	  
larger)	  difference	  between	  the	  left	  and	  right	  optics,	  is	  a	  primary	  risk	  factor	  for	  the	  development	  of	  amblyopia	  (Levi	  et	  al,	  
2011).	  Note	  that	  these	  signals	  were	  simulated	  for	  eyes	  with	  2mm	  pupils.	  With	  larger	  pupil	  diameters,	  the	  same	  difference	  
in	   refractive	   power	   would	   further	   reduce	   available	   disparity	   signals.	   For	   example,	   with	   a	   2mm	   pupil	   an	   8	   diopter	  
difference	   between	   the	   eyes	   produces	   the	   same	   difference	   in	   defocus	   blur	   as	   would	   a	   4mm	   pupil	   with	   a	   4	   diopters	  
difference	  between	  the	  eyes.	  In	  that	  case,	  there	  are	  no	  measureable	  signals	  above	  1	  cpd.	  (f)	  The	  signals	  in	  (e)	  after	  having	  
been	  passed	  through	  a	  bank	  of	  1.5	  octave	  bandwidth	  log-‐Gabor	  filters.	  (g)	  Same	  as	  (e)	  but	  with	  a	  4mm	  pupil.	  (h)	  Same	  as	  
(f)	  but	  with	  a	  4mm	  pupil.	  
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Figure	   S8.	   Depth	   structure	   not	   attributable	   to	   slant	   in	   natural	   scenes.	   (a)	   A	   representative	   natural	   range	   image.	   (b)	  
Overhead	  plan	  view	  of	  the	  range	  along	  the	  white	  scan-‐line	  in	  (a).	  (c)	  Range	  values	  within	  a	  1	  deg	  patch,	  marked	  by	  the	  
white	  box	  in	  (a)	  and	  the	  black	  box	  in	  (b).	  The	  dots	  represent	  the	  raw	  range	  values.	  The	  plane	  is	  the	  best	  fitting	  plane	  to	  the	  
range	   data.	   (d)	   Depth	   variation	   in	   1	   deg	   patches	   of	   natural	   scenes	   can	   largely	   be	   captured	   by	   slanted	   planes	   (see	  
supplementary	  text).	  Values	  near	  one	  indicate	  that	  all	  range	  variation	  can	  be	  captured	  by	  (planar)	  surface	  slant.	  Values	  
near	  zero	  indicate	  that	  none	  of	  the	  range	  variation	  can	  be	  captured	  by	  planar	  surface	  slant.	   In	  the	  most	  common	  patch,	  
nearly	  all	  depth	  variation	  is	  attributable	  to	  slant.	  In	  the	  median	  patch,	  75%	  of	  depth	  variation	  is	  captured	  by	  slant.	  	  
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Figure	   S9.	   Contrast	   normalization	   and	   the	   Gaussian	   form	   of	   the	   filter	   response	   distributions.	   The	   standard	  model	   of	  

contrast	   normalization	   in	   retinal	   and	   cortical	   neurons	   is	   given	   by	  
   
cnorm x( ) = c x( ) c x( ) 2

+ nc50
2 (Albrecht	  &	  Geisler,	  

1991;	  Albrecht	  &	  Hamilton,	   1982;	  Heeger,	   1992).	   Throughout	   the	  paper,	  we	   assumed	   that	   c50 	  had	   a	   value	  of	   zero.	  To	  
examine	  the	  effect	  of	  different	  values	  of	   c50 	  on	  the	  form	  of	  the	  filter	  response	  distributions,	  we	  first	  contrast-‐normalized	  
the	   test	   stimuli	   using	   different	   values	   of	   c50 .	   Then,	   we	   projected	   the	   contrast-‐normalized	   the	   test	   stimuli	   from	   each	  
disparity	   level	  onto	   the	   filters	   to	  obtain	   the	  conditional	   filter	  response	  distributions.	  Finally,	  we	   fit	  a	  multi-‐dimensional	  
generalized	  Gaussian	  (one-‐dimension	  for	  each	  filter)	  to	  each	  conditional	  response	  distribution,	  

   P R |δ k( ) ,	  via	  maximum	  
likelihood	   estimation.	   (a)	  When	   c50 =	   0.0,	   the	   conditional	   response	   distributions	   have	   tails	   that	   tend	   to	   be	   somewhat	  
lighter	   than	  Gaussians	   (i.e.	   lower	  kurtosis	   than	  a	  Gaussian).	  When	   c50 =	  0.1,	   the	   conditional	   response	  distributions	  are	  
most	  Gaussian	  on	  average.	  For	     c50  0.1,	  the	  distributions	  have	  heavier	  tails	  than	  Gaussians	  (i.e.	  higher	  kurtosis	  than	  a	  
Gaussian).	   (b)	   Powers	   of	   the	   multi-‐dimensional	   generalized	   Gaussians	   that	   best	   fit	   a	   subset	   of	   the	   two-‐dimensional	  
conditional	   filter	   response	   distributions.	   A	   power	   of	   two	   (dashed	   line)	   indicates	   that	   the	   best	   fitting	   distribution	  was	  
Gaussian.	  Powers	  greater	  than	  or	  less	  than	  two	  indicate	  that	  the	  responses	  are	  better	  fit	  by	  distributions	  having	  lighter	  or	  
heavier	  tails	  than	  a	  Gaussian,	  respectively.	  The	  best-‐fitting	  powers	  are	  shown	  for	  three	  different	  values	  of	   c50 :	  0.00,	  0.10,	  
and	  0.25.	  The	  average	  powers,	  across	  the	  conditional	  response	  distributions,	  for	  the	  three	  tested	  values	  of	    c50 	  were	  2.79,	  
2.07,	  and	  1.17	  respectively.	  The	  same	  qualitative	  results	  hold	  for	  the	  other	  two-‐dimensional	  response	  distributions.	  The	  
pattern	  also	  holds	  for	  higher-‐dimensional	  filter	  response	  distributions.	  In	  higher	  dimensions,	  however,	  results	  are	  noisier	  
because	  stable	  estimates	  of	  kurtosis	  require	  significantly	  more	  data.	  	  
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